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Abstract

Machine learning techniques are applicable to
computer system optimization. éVshev that
shared memory multiprocessors can successfully
utilize machine learning algorithms for memory
access pattern prediction. In particular three dif-
ferent on-line machine learning prediction tech-
nigues were tested to learn and predict repetiti
memory access patterns for three typical parallel
processing applications, the 2-D relaxation algo-
rithm, matrix multiply and &st Fourier Trans-
form on a shared memory multiprocessbhe
predictions were then used by a routing control
algorithm to reduce control latgnin the inter-
connection neterk by configuring the intercon-
nection netwrk to provide needed memory
access paths before yhavere requested. Three
trainable prediction techniques were used and
tested: 1). a Maxy predictor 2). a linear predic-
tor and 3). a time delay neural netk (TDNN)
predictor Different predictors performed best on
different applications, Wt the TDNN produced
uniformly good results.

1 INTRODUCTION

Large scale multiprocessor systems require/-¢ost,

highly-scalable, and dynamically reconfigurable intercon-

nection netwrks (INs) (Sigel, 90). Such INs &ér a lim-
ited number of communication channels that
configured on demand to satisfy required processm-

current processor requests. Hence, the end-to-endyatenc
incurred by such INs can be characterized by three compo-
nents (Figure 1)ontmwl time which is the time needed to
determine the mwe IN configuration and to pisically
establish the paths in the IMund time the time to trans-

mit the data into the IN; anitly time the time needed for
the message to trel through the IN to its final destina-
tion. Launch time can be reduced by using high bandwidth
opto-electronic INs, and fly time is relaly insignificant

in such an erironment since the end-to-end distances are
relatively short. Therefore, control time dominates the
communication latenc

However, in a multiprocessor systemeeuting a parallel
scientific application, the memory-access requests made
by the processors folloa repetitve pattern based on the
application. Compilers can analyze an application and
attempt to predict its access patterns (Gornish, aff), b
often the pattern is dynamic and thus hard to predict. The
goal of this veork is to emplg a technique that learns these
patterns on-line, predicts the processor requests, and per-
forms the IN configuration prior to the requests being
issued, thus hiding the control latgn@he efect is a sig-
nificant reduction in the communications latgfioar mul-
tiprocessor systems.

Control Launch Fly

Le L I-f

are

Processor Request

ory accesses. In this demandvdri ewironment, a proces-

sor accessing a memory module eslka request to an IN  Figure 1: The three components of the end-to-
controller to establish a path (reconfigure the IN) that sat-communication latery; control time, launch time an
isfies the processer'request. The controller is used to fly time. Control time dominatesserall communicatior
optimize the required IN configuration based on the set oflateng.
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Learning methods lva been applied inarious areas of e ler based on the State S i
computing and communication systemsr Fnstance, |N-.Controller based on the State Sequence Rout m

neural netwrks hae been applied to learn both netlw

topology and trdfc patterns for routing and control of | gtate Transformer State Generator
communication netarks (Fritsch, 91), (Jensen, 90), 1 Py-Mg; Pr-My g Ps-My

(Thomopoulos, 91). Using neurocomputing in high speec 2 P-Mg, Pg-Mg, P-My
communication netarks was the subject of a special : :
issue ofCommunicationgHabib, 95). Also, using a neu- Faults Predictions

Y

ral network as a static branch prediction techniquesw Mﬁ WYY k_IN Configurations
recently presented by (Calddi997). Other applications i i i

of neural netwrks are for the control of switching ele- \ — y

ments of a multistage interconnection netkvfor paral- PoKPU
lel computers (Funabiki, 93), (Giles, 95) and for learning P -M <
the structure of interconnection netikks (Goudreau, 95). &D Reconfigurable
For multicomputer systems, genetic algorithmsveha Interconnection
been applied as a distuted task scheduling technique \ ; ;
(Wang, 95). Solutions to the problem of mapping parallel 5 B0, Network (IN) v
programs onto multicomputer systems tovigte load 6 3G

balancing and minimize interprocessor communication PU
have been proposed using genetic algorithms (Seredyn-
ski, 94) and self ganizing maps (Dormans, 95) as well Figure 2: An 832 shared memory multiproces:

as \ariants of the GIWIng Cell Structures netwk System emplyjng the SSR paradigm as the IN contro

(Tumuluri, 96). In uniprocessor @inonments, Stigl et. _line Predicti it (P
al. (Stical, 91) propose a neural netik cache replace- and one on-line Prediction Unit (PU) per processor

ment al_gorithm. Their techniqye predicts which cachein such systems witlN processors an memory mod-
block will be accessed furthest in the future and thereforgjes, the reconfigurable IN can be configured to a&ehie
should be replaced, thusalering the cache miss rate. In ary of theNIK possiblepathsbetween a processor and a
general, the literature on machine learning in computingnemory module; heever, it can only preide a subset of
and communication systems has focused om tiese  these paths at sgiven time. A group of compatible (non-
techniques can be used to identify patterns of communblocking) paths are called an nfiguation or astate
cation in order to optimize the control of these systems. Because of contention for paths, the IN must be dynami-

The focus of this wrk is to study he three on-line cally reconfigured to satisfy the set of current processor
learning methods perform at predicting processem- ~ Mmemory accesses. This SMM model emyplan IN con-
ory access patterns in a multiprocessairenment. ¢ {rol system based on tiséate sequenceuting (SSR) par-
use a Markv predictor a linear predictor and a time- adigm (Chiarulli, 94) which taés adantage of the locality
delay neural netark (TDNN) (Lang, 90) to learn and characteristics »hibited in memory access patterns
predict the memory access patterns of three parallelizegohnson, 92) and reconfigures the mekwthrough a
scientific applications: @-D relaxation algorithm a  fixed set of configurations in a repefitimannerThe IN
matrix multiply and al-D FFT. The net section presents controller used for state sequence routing, consists of a
the ewironment of our Bperiment where we describe a State @nerator which is controlled by atate tansformer
shared memory multiprocessor model emgiplg predic- The state generator maintains a collection of configura-
tion units. In section 3, we describe the three predictiodions, called state sequencend periodically reconfigures
methods used and in section 4 we presgpeemental the IN with a nev configuration from the set. Specifically
results of the predictors. The final section interprets oufl€ State sequence is maintained igaic shift register of

results and discusses future directions of research. lengthk as shwn in Figure 2. Vith each rgister shift, an
IN configuration is broadcast to the processors, memory
2 MULTIPROCESSOR MODELS modules, and switching elements of the IN. The state

sequence routexploits the memory access locality inher-
Shared memory parallel computers are commonlyent in these patterns by re-using the sequence of states.
referred to asnultiprocessorsystems (Bell, 85), (mar The state transformer is responsible for determining the
94). Our shared memory multiprocessor (SMM) systenset of configurations contained within the state generator
consists of 8 processors (P0O-P7), 32 memory modulelsased on processor requests. A processor that needs to
(M0-M31), a reconfigurable IN and an IN controller (Fig- access a memory module issudaudt (or request) to the
ure 2). This SMM model uses a state-sequence routestate transformer only if the current state sequence does
(Chiarulli, 94) as the reconfigurable interconnection netnot already include the required path to a memory module.
work controller In addition, we use a SMM simulator In response, the state transformer adds the required path to
which allovs us to record the memory access traces ofthe state sequence by rermg the least recently used
parallel applications. path.



Using SSR thewerage control lateryeL, incurred by each  similar to the one used. Second, we use the procsssor’

access can be shno to be: memory access patterns as input to the PU to perform on-
k line training and one-step ahead prediction of thet ne
LC =(1- p)é +p(k+ f) (1)  memory access. Third, weaduate the predictions by sim-

) » ) ulating the multiprocessor behar with and without the
wherep is the probability of adult, k is the sequence predictions and monitor the number afifts incurred. &
length, and is the &ult service time. If a processor needsegach of the xperiments we use a relaly short state
a path and itxésts in the state sequence, there isautf  sequence lengttk), As can be seen from Equation 1, the
issued and the lateyés just the time for the path to come optimum sequence lengtlk, is a trade df between
around in the sequence which on aerage isk/2. Howv-  jncreasing to reducedults, and &epingk small to reduce
ever if the path does nokist afterk broadcasts, the pro- aijting time. The slues ofk were chosen to minimize the
cessor issues audlt which must be serviced before the tgits for these applications, for the non-predéttase.
memory access can occlihe SSR based IN controller \ve tested using the best 1, 2, 3 and 4 predictions of the
needs only to establish the initial paths and respond to theys as hints to the SSR contrall&he three prediction
changes in the memory access pattern; it is not required fethods tested are considered appropriate for this
respond to indidual memory access requests. dynamic system since the training and prediction is per-

Our goal is to emplpa technique that reduces the proba-formed on-line.
bility of a fault by predicting changes in memory acces
patterns and informing the controller of a needed transfo 31 MARKOQV PREDICTOR ] )

mation before adult occurs. Thus, the controller will There are manways one could consider using a Mark
transform the state sequence to include the soon-to-bgredictor (Isaacson, 76).&\onsider both a first and sec-
needed pathyaiding the lateng incurred by thedult. As on_d. order predlctqr which calculates the. conditional prob-
shawn in Figure 2, a prediction unit (PU) is used to learnability p of accessing memory modulg given processor
the access pattern of each procesEoe predictions made Pk h_as just accessed memory moddiei.e. p(M;|M;;P,).

by the PU are used as hints by the SSR while routing theimilarly, for the second order we _qaljc_ulate
memory accesses. Since, processemory access pat- P(Mj|M;,Mq;P,) where the conditional probability is con-
terns change dynamically and thus can be modeled asd#ioned on processoPy previously accessing memory
time series, for this preliminaryvastigation, we chose to moduleMg, thenM;. Since in this model we use one PU
study three simple on-line time series prediction methodd?er processorthe input of the Marv prediction unit is

a Marlov predictor a linear predictor and a TDNN. the temporal sequence depicting the memory access pat-
tern of a processofhe probabilities are stored in a proba-

bility transition matrix. Br the first order predictor
3 PREDICTION METHOD EXPERIMENT probability p; corresponds to the probability of accessing
memory moduld if the processor is currently accessing
memory modulg. Similarly for the second order predic-

ods, we test he well each technique can predict thtne ¢ ds 1o th bability of .
memory access pattern as the SMidautes three typical ©OF Pi(g) COrresponds 1o the probability of accessing mem-
ory modulei if the processor is currently accessing

parallelized scientific applications. The first application is . .
memory modulg after completing an access to memory

a parallel (32132) 2-D grid-based temperature progag _ o >
tion/relaxation algorithm; the second application is aneduled. Each entry in the transition matrix is updated

s ; : . d normalized on-line as the applicatio®@ution pro-
repetitive (24112 ® 12024) matrix multiply program; the 2" . . :
third is the memory access pattern generated from a rep&€E€dS: Br example, in the first order Maok predictor of

itive 1D Fast fourier Transform (FFT) of a 16 samplea= ~ ProcessoPo, the probability of processét, going from
tor. (FFT) P M, to M, at time step is calculated as the number of tran-

sitions Py has performed fronM; to M, divided by the
Each eperiment consists of three distinct phases: Firstiotal number of time®, has accessed, from time0 to
using the shared memory multiprocessor (SMM) simulatimet. The number of parameters needed for the first order
tor, we generate the memory accesses of a parallel prdarkov predictor is 1024 probabilities while the number
gram assuming fed lateng in the IN and memory of parameters for the second order Marks 32K proba-
modules. Using the vamemory accesses generated by thebilities. However, both first and second order predictors
SMM simulator we etract the sequence of memory update 32 probabilities on-line withrexy access since the
accesses of a single proces3dris memory access is rep- next access could go to one of 32 memory modules. At
resented dferently depending on the predictor usedr F ary given time, the non-zero probabilities are the predic-
each &periment we use the 32 memory module accestons given to the state sequence roukéawvever, the num-
pattern of a single processthese patterns are stnoin  ber of non-zero probabilities could be up to 32, therefore,
Figures 3a, 4a, and 5a. The applications are symmetrically fixed number of the most Bky predictions is specified.
partitioned to recute the same code on all processordVe tested the first and second order Muarkredictors
while each processor uses feient parts of the data. using the highest 1, 2, 3, and 4 probabilities as predictions.
Hence, the access patterns of all other processorgire v Also, we tested the system using state sequence lekjjths (

To evaluate the performance ofirious prediction meth-



of size 4, 5, 6 and 7. The results for each access pattern a3 TIME DELAY NEURAL NETWORK
discussed in the results section and the best results are
depicted in Figures 3c, 4c¢, and 5c. The performance of th
Markov predictor is compared to that of the Linear and
TDNN PUs in Section 4.

he data encoding of the memory accesses for the TDNN
§s the same as that of the Linear predickagain, since

we are implementing one-step-ahead prediction, the
TDNN takes as input the current binaryector and
attempts to predict the accessior at the nd time step

82 LINEAR PREDICTOR as in (Sakr96). Therefore there are 32 inputs and 32 out-
For the Linear PU, the input data is transformed from aputs for the netark. For each input, wex@eriment with
processos rav 32 memory module traces into a sequence a tapped delay line of length 1, 5 or 10. The total number
of 32 bit binary ectors. Theth component of the binary  of inputs to the multilayer perceptron (MLP) section of
vector is set to 1 when an access toi‘fhmemory module  the TDNN is 64, 192, 352 degd from (320 (1 input +
takes place. All otheralues in that @ctor are set to zero.  # taps)). V& tested the performance of the TDNN using a
. . single hidden layer of size 10, 20 and 30 neuronsryev
For each alue in the binary symbolector we use a i 5t node has an additional bias weight, we use tapped
step linear predictor which attempts to predict thet ne delay lines of sizes 1, 5 and 10. Thigegi 1002, 2282,
access based on a linear combination of all #1866 in 385 o4 weights for the TDNN with 10 nodes in the
the \ector and their historySince there are 32 memory hidden layer; 1972, 4532, 7732 total weights for the
modules (1132 accessector) in the system tested, we use +pNN with 20 nodes in the hidden layer: and 2942
32 linear predictors that predict thexhaccess &ctor in 6782, 11582 total weights for the TDNN with 30 nodes in

parallel. In order to compare the results of this predictorthe hidden la : ; y
X X . yemNodes in the hidden layer use ypér
with that of the TDNN we use one bias weight for each i angent actation function, while nodes in the out-

output \alue, hence the Linear predictor is actually an put layer are dihe. All of the weights were initialized

affine predictor (Hecht, 91): uniformly in the range [-j, 1/, where@ is the number
I 32 of connections that enter a nodan(fin). The learning
. . o algorithm is a simple on-line gradient descent algorithm
Xilt+1) = z z Wikt Wig =1.2....32: =1.5.10(2) using the same adayi learning rate used for the Linear
k=0j=1 predictor Since the training and prediction is performed
on-line, we mak only one pass through the data. Wan
whereX is a binary ector of dimension 3% denotes the ~ Prediction interpretations could be used; we found that
i component an&/ is the prediction. Since we are imple- Pest performanceas achieed if the output neurons with
menting one-step-ahead prediction, the Linear predictorth€ lagest wlues are selected as prediction® #sted
takes as input the current binargator and the pasthis-  Using 1, 2, 3 or 4 output neurons with the highesias
tory vectors and attempts to predict thector X at the as prediction hints to the SS_R c_ontrolrélne best perfor-
next time step (Equation 2). 8\tested the performance of Mance of the TDNN is shan in Figures 3e, 4e, and Se.
the Linear predictor using= 1, 5, and 10 pastectors.
Therefore, the number of inputs for the three Linear pre-4 RESULTS
dictors tested are 64, 192, 382k (I + 1)) and the num-
ber of coeficients (weights) to update at each time step is In this section we discuss the performance of the three
2080, 6176, 11296 respaatly. The learning algorithm is  prediction units tested for the three applications imple-
a simple on-line gradient descent algorithm using the fol-mented on our SMM model. In order to compare the per-
lowing adaptie learning rate, starting walue is set to 0.01:  formance of the prediction units, for each application we
plot the memory access pattern faled by fult plots.

if ( (present error - préous error) > preious errorx 10% ){ First we shav the characteristic access pattern of each of
reduce learning rate by a decreametdr of 0.5 the applications in Figures 3a, 4a, and 5a. Then the net-
and mee back in the weight space to thevioes point} work faults incurred for the non-predioti case (Figures

else { 3b, 4b, and 5b) follwed by the neterk faults incurred
keep the updated weights and increase the learning rate by the system using the PUs (Figures 3c-e, 4c-e, and 5c-
by an increaseattor of 1.1} e). In this paper we report on the best results of each of

the predictors for each application, across the space of the

. . b system and predictor parameters tested.tire complete
The algorithm is performed on-line, so we malaly one results see (Sakebh).

pass through the data. Furthermore, the outputs (predic-
tions) with \alues > 0.5 of which the Igest alues are
selected as the predictions which are passed along to thé‘1 2D RELAXATION

state sequence router as hinte t&sted using 1, 2, 3 or 4 Figure 3a shws 8697 accesseetors which depict the
predictions as hints to the SSR controllEne best results access bel@r of the 2-D Relaxation algorithm, the
of the Linear predictor are depicted in Figures 3d, 4d, andarge discontinuity in the pattern is a no-memory-access
5d. period which is a characteristic of the algorithm. The



access patternscieibit a stairlike behsior, where each

tions used as hints does not enhance performance. On the

stair discontinuity reflects a change in the memory modulether hand, increasirighelps increase the total number of

access. &1 this access pattern the first order Marfre-

network faults eliminated. & tested manTDNN config-

dictor performed the best of the three prediction unitarations, the performance of the TDNN in predicting this

tested. The second order Mavk predictor shas

pattern relied hadly on the number of nodes in the hidden

improved performancever the first order only for the 1 layer Increasing the history used (tapped-delay line) does
prediction case. In general, increasing the number of pra&wot improve performance as much as increasing the size of
dictions used by the state sequence router enhanced p#re hidden layerUsing a lage k is also crucial indult
formance while increasing the size of the state sequen&imination for this pattern. Figure 3b plots the ratw

faults incurred as impulses for the non-predéitcase.

(K) does not for this particular applicatiororRhe Linear
number of predic-The other &ult plots shw the best performance of the on-

predictor increasing the history or the
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Figure 3: (a) The memory access pattern of the

relaxation algorithm for Processaog. b)) The number o
network faults incurred without predictions. (c) Numkt
of network faults using the Madv PU. (d) Number of
network faults using the Linear PU. (e) Number
network faults using the TDNN PU.

line predictors for the 2-D relaxation algorithm. The first
order Marlov predictor using 3 predictions ank af size
3 eliminated 96% of the nebwk faults. It performs best
for this pattern since the total number of non-zero proba-
bilities is small (three), and using the top three probabili-
ties is enough to predict almost perfectly and eliminate all
faults (Figure 3c). The best performance of the Linear pre-
dictor was achieed by using 1 past accessctor 2 pre-
dictions and & of size 6 eliminating 95% of alkfilts.
Compared to the Madv predictor the Linear predictor
needs a f@ more training iterations before its predictions
start to greatly reduce the number afilfs (Figure 3d).
The TDNN with a hidden layer of 30 nodes, a tapped
delay line of size 2 anklof size 7 produced its best result
eliminating 71% of the netwk faults, shavn in Figure 3e.

4.2 MATRIX MULTIPLY

The matrix multiply application>dibits a more compie
pattern since each processor accesses the memory mod-
ules in a less uniformaghion than the 2-D relaxation algo-
rithm. Figure 4a shes the 11561 ector access pattern.
Since this applicationxdibits a comple access pattern
the first and second order Maxkpredictors cannot cap-
ture and predict the access pattern corretbreasing the
number of predictions dt does not enhanceverall per-
formance. The performance of the Linear predictor is sim-
ilar to that of the Mardv predictor for this application.
Varying the historyork, or the number of predictions does
not improve performance. On the other hand, the TDNN
produces mainally better results. The TDNN performs
best with a hidden layer of 10 nodes, using 2 predictions
and ak of size 7 aching 30% fult reduction. Havever,
increasing the size of the hidden layer hinders the perfor-
mance of the TDNN. Figures 4b-e shthe best perfor-
mance of all three prediction units for this access pattern.
In this case, the Mad¢ predictor performs poorly since
the probabilities are of equahles which increases the
number of wrong predictions. Specificallthe second
order Marlov predictor using 4 predictions ank af size
5 eliminated 6% of theafults. The best performance of the
Linear predictar eliminating 1% of the dults, wvas
achieved using 10 past accessctors, 1prediction andla
of size 6. The linear predictor is not able to find a linear
combination of the past accesses to predict theaoeess
well. However, the TDNN still achiees a moderate reduc-

tion in the number ofdults.



the percentage oflilt elimination for both the first and
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4.3 FAST FOURIER TRANSFORM

second order Madk predictors. The Linear predictor pro-

shavn in Figure 5a. The Madv predictor is capable of

e e e e o e e & & < s duces its best results when using the least hidtoeyleast
LR I I I A number of predictions andkeof size 6. Increasing the his-
R S S ST S S N S S E Y tory used or the number of predictions does not boost per-
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Figure 4: (a) The memory access pattern of the m ol (d) Linear PU |
multiply for Processor § (b) The number of netwk 5 -
faults incurred without predictions. (c) Number B
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The FFT application produces the memory access pattern
capturing and predicting this pattern thus eliminatingFigure 5: (a) The memory access pattern of the FF1
almost all the dults incurred by the state sequence routerProcessor £ (b) The number of newwk faults
The second order Maok captures the pattern of accessincurred without predictions. (c) Number of netk
thus producing better results compared to the first ordefaults using the Madv PU. (d) Number of netark
Markov. Increasing the number of predictions used is esserfaults using the Linear PU. (e) Number of netkv
faults using the TDNN PU.

tial for good performance while increasikgoes not déct



tions of either 2 or 3 with k of size 6 or 7 are needed for vents 95% of thealults; and the TDNN remves 71% of
good performance. Figures 5b-e whthe best results of the faults. While for the matrix multiply: the second order
the PUs for this access pattern. Since the FFT algorithilarkov predictor eliminates 6% of thadlts; the linear
exhibits a simple access pattern, the second orderdMark predictor remees 1% of the dults; and the TDNN pre-
predictor is able to capture the pattern and predict wellents 30% of the netwk faults from taking place. Finally
eliminating 95% of thedults using the top four predic- using the access patterns of the FE¥e second order
tions and & of size 4. The Linear predictor using 1 pastMarkov predictor preents 95% of the netk faults; the
access gctor 1 prediction and & of size 6 is capable of linear predictor eliminates 34% of thaufts; and the
eliminating some, 34%, of the neaivk faults. The TDNN  TDNN removes 45% of the netwk faults. As &pected,
with 10 nodes in the hidden layer tapped delay line of different predictors perform best onfdiient applications.
size 10, using the top 2 predictions arlddd size 6 elimi-  From visual inspection of the access patternswshim
nated 45% of thealults. The TDNN performs better than Figures 3a, 4a, and 5a), one could say that the access pat-
the Linear predictor for this pattermttmot better than the terns of diferent applicationsary in compleity from the

Markov. 2-D relaxation being the most simple to the matrix multi-
ply the most comple All prediction methods perform
5 SUMMARY AND CONCLUSIONS well on the applications with the simple access patterns.

On the other hand, forewy compla patterns, the Madv
Completely connected interconnection nertks (INs) are  and Linear prediction methods perforrary poorly and
not feasible in lage scale multiprocessor systems becausé DNN gives uniformly good results.

of their high compleity and soaring cost. Accordinglye _ o
utilize less &pensie reconfigurable interconnection net- Table 1: Percentage of faults eliminated for the three

works that scale wellut sufer from high oerhead due to best learning techniques tested using the access
control lateng. Control lateng is the time delay incurred Patternsof three parallel applications

by the netwrk controller to determine a wedesired IN

configuration and to pisically establish the paths in the Markov Linear TDNN
network. Each reconfiguration request (netiw fault) is Predictor | Predictor | Predictor
triggered when the current naivk configuration dils to

satisfy a process@’memory access. These requests arge 2-D Relaxation 96% 95% 71%
performed on a demand den basis. Hwever, memory - -

access patterns of multiprocessor systexasiging paral- | Matrix Multiply 6% 1% 30%
lel scientific applicationsxibit a lot of repetitieness due

to loops which are a characteristic of such applications. FFT 95% 34% 45%

Hence, in this wrk we study hev three learning methods

perform at learning and predicting these access patter@iven the multiprocessing @nonment, diferent applica-
on-line. Correct prediction of the access patternswallo tions exhibit very different patterns and a technique that
anticipatory reconfiguration of the IN and thereby satisfywill predict well across patterns is more appealing than a
the forthcoming memory accessesvergting a net@rk  technique that performs best for specific patterns. Thus,
fault. Thus, the \@rage control laterycL is hidden and we hypothesize that the TDNN has the best chance of
consequentlywerall communication lategds reduced. adapting to dierent memory access patterns from the

V@riety of real applications. hver, it could be feasible

The three on-line prediction methods tested are: a first ar} Il predicti thods i it " del
a second order Maok predictor; a linear prediction 83‘%2? 9p4r)ealr$dlcl)1r;(:,nt?1e%eitlr;)?egqimngxlﬁerSmo €

method; and a time delay neural netiw (TDNN). We
train the prediction methods using the access patterns g

f e .
three parallel scientific applications: a 2D relaxation algo-thlgu:ﬁu}f{?rfosgggé? gﬂ%ﬁfﬁenngogigﬁagzt'?h:'gz{g‘“g? of
rithm; a matrix multiply; and a dst urier Transform P '

(FFT). The multiprocessor model used is an 8 process ?Ocrﬁgpnciirggr}g mgt'mgrggrlay;cgggsto ;T;Tn%ryaggihgigv
32 memory module shared memory system with a stafg2ntent y P
rediction methods #ct actual performance. &\plan to

;sriﬂgrence router as the reconfigurable interconnection coﬂest the performance of ffent machine leaming tech-

nigues and other prediction methods. Also, dud be
The eperiments sho that coupling state sequence rout-interesting to imesticate the applicability of prediction
ing with different types of on-line prediction methods cantechniques to the general problem of lagehiding at all
decrease the number of memory accasdtS across dif- levels of the memory hierarghAnother open question is
ferent applications with some methods being mofecef how will these prediction methods befieiently imple-
tive than others. The best results of the prediction methodsented in hardare and their resultsfettively used. br
for the access patterns tested are asvisliffable 1). lefr  example hav and what is the &fct of memory &ult pre-
the 2D relaxation algorithm the first order Mawkpredic-  diction in the actual speedup of applications on a multipro-
tor eliminates 96% of theafilts; the Linear predictor pre- cessor?
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