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Abstract

Machine learning techniques are applicable to
computer system optimization. We show that
shared memory multiprocessors can successfully
utilize machine learning algorithms for memory
access pattern prediction. In particular three dif-
ferent on-line machine learning prediction tech-
niques were tested to learn and predict repetitive
memory access patterns for three typical parallel
processing applications, the 2-D relaxation algo-
rithm, matrix multiply and Fast Fourier Trans-
form on a shared memory multiprocessor. The
predictions were then used by a routing control
algorithm to reduce control latency in the inter-
connection network by configuring the intercon-
nection network to provide needed memory
access paths before they were requested. Three
trainable prediction techniques were used and
tested: 1). a Markov predictor, 2). a linear predic-
tor and 3). a time delay neural network (TDNN)
predictor. Different predictors performed best on
different applications, but the TDNN produced
uniformly good results.

1   INTRODUCTION

Large scale multiprocessor systems require low-cost,
highly-scalable, and dynamically reconfigurable intercon-
nection networks (INs) (Siegel, 90). Such INs offer a lim-
ited number of communication channels that are
configured on demand to satisfy required processor-mem-
ory accesses. In this demand driven environment, a proces-
sor accessing a memory module makes a request to an IN
controller to establish a path (reconfigure the IN) that sat-
isfies the processor’s request. The controller is used to
optimize the required IN configuration based on the set of

current processor requests. Hence, the end-to-end latency
incurred by such INs can be characterized by three compo-
nents (Figure 1):control time, which is the time needed to
determine the new IN configuration and to physically
establish the paths in the IN;launch time, the time to trans-
mit the data into the IN; andfly time, the time needed for
the message to travel through the IN to its final destina-
tion. Launch time can be reduced by using high bandwidth
opto-electronic INs, and fly time is relatively insignificant
in such an environment since the end-to-end distances are
relatively short. Therefore, control time dominates the
communication latency.

However, in a multiprocessor system executing a parallel
scientific application, the memory-access requests made
by the processors follow a repetitive pattern based on the
application. Compilers can analyze an application and
attempt to predict its access patterns (Gornish, 90), but
often the pattern is dynamic and thus hard to predict. The
goal of this work is to employ a technique that learns these
patterns on-line, predicts the processor requests, and per-
forms the IN configuration prior to the requests being
issued, thus hiding the control latency. The effect is a sig-
nificant reduction in the communications latency for mul-
tiprocessor systems.
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Figure 1: The three components of the end-to-end
communication latency; control time, launch time and
fly time. Control time dominates overall communication
latency.
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Learning methods have been applied in various areas of
computing and communication systems. For instance,
neural networks have been applied to learn both network
topology and traffic patterns for routing and control of
communication networks (Fritsch, 91), (Jensen, 90),
(Thomopoulos, 91). Using neurocomputing in high speed
communication networks was the subject of a special
issue ofCommunications (Habib, 95). Also, using a neu-
ral network as a static branch prediction technique was
recently presented by (Calder, 1997). Other applications
of neural networks are for the control of switching ele-
ments of a multistage interconnection network for paral-
lel computers (Funabiki, 93), (Giles, 95) and for learning
the structure of interconnection networks (Goudreau, 95).
For multicomputer systems, genetic algorithms have
been applied as a distributed task scheduling technique
(Wang, 95). Solutions to the problem of mapping parallel
programs onto multicomputer systems to provide load
balancing and minimize interprocessor communication
have been proposed using genetic algorithms (Seredyn-
ski, 94) and self organizing maps (Dormans, 95) as well
as variants of the Growing Cell Structures network
(Tumuluri, 96). In uniprocessor environments, Stigal et.
al. (Stigal, 91) propose a neural network cache replace-
ment algorithm. Their technique predicts which cache
block will be accessed furthest in the future and therefore
should be replaced, thus lowering the cache miss rate. In
general, the literature on machine learning in computing
and communication systems has focused on how these
techniques can be used to identify patterns of communi-
cation in order to optimize the control of these systems.

The focus of this work is to study how three on-line
learning methods perform at predicting processor-mem-
ory access patterns in a multiprocessor environment. We
use a Markov predictor, a linear predictor and a time-
delay neural network (TDNN) (Lang, 90) to learn and
predict the memory access patterns of three parallelized
scientific applications: a2-D relaxation algorithm, a
matrix multiply, and a1-D FFT. The next section presents
the environment of our experiment where we describe a
shared memory multiprocessor model employing predic-
tion units. In section 3, we describe the three prediction
methods used and in section 4 we present experimental
results of the predictors. The final section interprets our
results and discusses future directions of research.

2   MULTIPROCESSOR MODELS

Shared memory parallel computers are commonly
referred to asmultiprocessor systems (Bell, 85), (Kumar,
94). Our shared memory multiprocessor (SMM) system
consists of 8 processors (P0-P7), 32 memory modules
(M0-M31), a reconfigurable IN and an IN controller (Fig-
ure 2). This SMM model uses a state-sequence router
(Chiarulli, 94) as the reconfigurable interconnection net-
work controller. In addition, we use a SMM simulator
which allows us to record the memory access traces of
parallel applications.

In such systems withN processors andK memory mod-
ules, the reconfigurable IN can be configured to achieve
any of theN✕K possiblepathsbetween a processor and a
memory module; however, it can only provide a subset of
these paths at any given time. A group of compatible (non-
blocking) paths are called an INconfiguration or astate.
Because of contention for paths, the IN must be dynami-
cally reconfigured to satisfy the set of current processor-
memory accesses. This SMM model employs an IN con-
trol system based on thestate sequence routing (SSR) par-
adigm (Chiarulli, 94) which takes advantage of the locality
characteristics exhibited in memory access patterns
(Johnson, 92) and reconfigures the network through a
fixed set of configurations in a repetitive manner. The IN
controller, used for state sequence routing, consists of a
state generator which is controlled by astate transformer.
The state generator maintains a collection of configura-
tions, called astate sequence and periodically reconfigures
the IN with a new configuration from the set. Specifically,
the state sequence is maintained in a cyclic shift register of
lengthk as shown in Figure 2. With each register shift, an
IN configuration is broadcast to the processors, memory
modules, and switching elements of the IN. The state
sequence router exploits the memory access locality inher-
ent in these patterns by re-using the sequence of states.
The state transformer is responsible for determining the
set of configurations contained within the state generator
based on processor requests. A processor that needs to
access a memory module issues afault (or request) to the
state transformer only if the current state sequence does
not already include the required path to a memory module.
In response, the state transformer adds the required path to
the state sequence by removing the least recently used
path.
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Figure 2: An 8✕32 shared memory multiprocessor
system employing the SSR paradigm as the IN controller
and one on-line Prediction Unit (PU) per processor.



Using SSR the average control latency, L, incurred by each
access can be shown to be:

(1)

where p is the probability of a fault, k is the sequence
length, andf is the fault service time. If a processor needs
a path and it exists in the state sequence, there is no fault
issued and the latency is just the time for the path to come
around in the sequence which on an average isk/2. How-
ever if the path does not exist afterk broadcasts, the pro-
cessor issues a fault which must be serviced before the
memory access can occur. The SSR based IN controller
needs only to establish the initial paths and respond to the
changes in the memory access pattern; it is not required to
respond to individual memory access requests.

Our goal is to employ a technique that reduces the proba-
bility of a fault by predicting changes in memory access
patterns and informing the controller of a needed transfor-
mation before a fault occurs. Thus, the controller will
transform the state sequence to include the soon-to-be-
needed path, avoiding the latency incurred by the fault. As
shown in Figure 2, a prediction unit (PU) is used to learn
the access pattern of each processor. The predictions made
by the PU are used as hints by the SSR while routing the
memory accesses. Since, processor-memory access pat-
terns change dynamically and thus can be modeled as a
time series, for this preliminary investigation, we chose to
study three simple on-line time series prediction methods:
a Markov predictor, a linear predictor and a TDNN.

3   PREDICTION METHOD EXPERIMENT

To evaluate the performance of various prediction meth-
ods, we test how well each technique can predict the next
memory access pattern as the SMM executes three typical
parallelized scientific applications. The first application is
a parallel (32✕32) 2-D grid-based temperature propaga-
tion/relaxation algorithm; the second application is a
repetitive (24✕12 • 12✕24) matrix multiply program; the
third is the memory access pattern generated from a repet-
itive 1D Fast Fourier Transform (FFT) of a 16 sample vec-
tor.

Each experiment consists of three distinct phases: First,
using the shared memory multiprocessor (SMM) simula-
tor, we generate the memory accesses of a parallel pro-
gram assuming fixed latency in the IN and memory
modules. Using the raw memory accesses generated by the
SMM simulator, we extract the sequence of memory
accesses of a single processor. This memory access is rep-
resented differently depending on the predictor used. For
each experiment we use the 32 memory module access
pattern of a single processor, these patterns are shown in
Figures 3a, 4a, and 5a. The applications are symmetrically
partitioned to execute the same code on all processors
while each processor uses different parts of the data.
Hence, the access patterns of all other processors are very

similar to the one used. Second, we use the processor’s
memory access patterns as input to the PU to perform on-
line training and one-step ahead prediction of the next
memory access. Third, we evaluate the predictions by sim-
ulating the multiprocessor behavior with and without the
predictions and monitor the number of faults incurred. For
each of the experiments we use a relatively short state
sequence length (k). As can be seen from Equation 1, the
optimum sequence length,k, is a trade off between
increasingk to reduce faults, and keepingk small to reduce
waiting time. The values ofk were chosen to minimize the
faults for these applications, for the non-predictive case.
We tested using the best 1, 2, 3 and 4 predictions of the
PUs as hints to the SSR controller. The three prediction
methods tested are considered appropriate for this
dynamic system since the training and prediction is per-
formed on-line.

3.1  MARKOV PREDICTOR
There are many ways one could consider using a Markov
predictor (Isaacson, 76). We consider both a first and sec-
ond order predictor which calculates the conditional prob-
ability p of accessing memory moduleMi given processor
Pk has just accessed memory moduleMj, i.e.p(Mi|Mj;Pk).
Similarly, for the second order, we calculate
p(Mi|Mj,Mq;Pk) where the conditional probability is con-
ditioned on processorPk previously accessing memory
moduleMq, thenMj. Since in this model we use one PU
per processor, the input of the Markov prediction unit is
the temporal sequence depicting the memory access pat-
tern of a processor. The probabilities are stored in a proba-
bility transition matrix. For the first order predictor,
probability pij corresponds to the probability of accessing
memory modulei if the processor is currently accessing
memory modulej. Similarly for the second order predic-
tor, pi(jq) corresponds to the probability of accessing mem-
ory module i if the processor is currently accessing
memory modulej after completing an access to memory
moduleq. Each entry in the transition matrix is updated
and normalized on-line as the application execution pro-
ceeds. For example, in the first order Markov predictor of
processorP0, the probability of processorP0 going from
M1 to M2 at time stept is calculated as the number of tran-
sitions P0 has performed fromM1 to M2 divided by the
total number of timesP0 has accessedM1 from time0 to
time t. The number of parameters needed for the first order
Markov predictor is 1024 probabilities while the number
of parameters for the second order Markov is 32K proba-
bilities. However, both first and second order predictors
update 32 probabilities on-line with every access since the
next access could go to one of 32 memory modules. At
any given time, the non-zero probabilities are the predic-
tions given to the state sequence router. However, the num-
ber of non-zero probabilities could be up to 32, therefore,
a fixed number of the most likely predictions is specified.
We tested the first and second order Markov predictors
using the highest 1, 2, 3, and 4 probabilities as predictions.
Also, we tested the system using state sequence lengths (k)
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of size 4, 5, 6 and 7. The results for each access pattern are
discussed in the results section and the best results are
depicted in Figures 3c, 4c, and 5c. The performance of the
Markov predictor is compared to that of the Linear and
TDNN PUs in Section 4.

3.2  LINEAR PREDICTOR

For the Linear PU, the input data is transformed from a
processor’s raw 32 memory module traces into a sequence
of 32 bit binary vectors. Theith component of the binary
vector is set to 1 when an access to theith memory module
takes place. All other values in that vector are set to zero.

For each value in the binary symbol vector we use a next
step linear predictor which attempts to predict the next
access based on a linear combination of all the values in
the vector and their history. Since there are 32 memory
modules (1✕32 access vector) in the system tested, we use
32 linear predictors that predict the next access vector in
parallel. In order to compare the results of this predictor
with that of the TDNN we use one bias weight for each
output value, hence the Linear predictor is actually an
affine predictor (Hecht, 91):

i=1,2,…32; l=1,5,10 (2)

where  is a binary vector of dimension 32,xi denotes the
ith component and  is the prediction. Since we are imple-
menting one-step-ahead prediction, the Linear predictor
takes as input the current binary vector and the pastl his-
tory vectors and attempts to predict the vector  at the
next time step (Equation 2). We tested the performance of
the Linear predictor usingl = 1, 5, and 10 past vectors.
Therefore, the number of inputs for the three Linear pre-
dictors tested are 64, 192, 352 (32 × (l + 1)) and the num-
ber of coefficients (weights) to update at each time step is
2080, 6176, 11296 respectively. The learning algorithm is
a simple on-line gradient descent algorithm using the fol-
lowing adaptive learning rate, starting value is set to 0.01:

The algorithm is performed on-line, so we make only one
pass through the data. Furthermore, the outputs (predic-
tions) with values > 0.5 of which the largest values are
selected as the predictions which are passed along to the
state sequence router as hints. We tested using 1, 2, 3 or 4
predictions as hints to the SSR controller. The best results
of the Linear predictor are depicted in Figures 3d, 4d, and
5d.
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if ( (present error - previous error) > previous error× 10% ){
reduce learning rate by a decrease factor of 0.5
and move back in the weight space to the previous point}

else {
keep the updated weights and increase the learning rate
by an increase factor of 1.1}

3.3  TIME DELAY NEURAL NETWORK

The data encoding of the memory accesses for the TDNN
is the same as that of the Linear predictor. Again, since
we are implementing one-step-ahead prediction, the
TDNN takes as input the current binary vector and
attempts to predict the access vector at the next time step
as in (Sakr, 96). Therefore there are 32 inputs and 32 out-
puts for the network. For each input, we experiment with
a tapped delay line of length 1, 5 or 10. The total number
of inputs to the multilayer perceptron (MLP) section of
the TDNN is 64, 192, 352 derived from (32 ✕ (1 input +
# taps)). We tested the performance of the TDNN using a
single hidden layer of size 10, 20 and 30 neurons. Every
output node has an additional bias weight, we use tapped
delay lines of sizes 1, 5 and 10. This gives 1002, 2282,
3882 total weights for the TDNN with 10 nodes in the
hidden layer; 1972, 4532, 7732 total weights for the
TDNN with 20 nodes in the hidden layer; and 2942,
6782, 11582 total weights for the TDNN with 30 nodes in
the hidden layer. Nodes in the hidden layer use a hyper-
bolic tangent activation function, while nodes in the out-
put layer are affine. All of the weights were initialized
uniformly in the range [-1/φ, 1/φ], whereφ is the number
of connections that enter a node (fan in). The learning
algorithm is a simple on-line gradient descent algorithm
using the same adaptive learning rate used for the Linear
predictor. Since the training and prediction is performed
on-line, we make only one pass through the data. Many
prediction interpretations could be used; we found that
best performance was achieved if the output neurons with
the largest values are selected as predictions. We tested
using 1, 2, 3 or 4 output neurons with the highest values
as prediction hints to the SSR controller. The best perfor-
mance of the TDNN is shown in Figures 3e, 4e, and 5e.

4   RESULTS

In this section we discuss the performance of the three
prediction units tested for the three applications imple-
mented on our SMM model. In order to compare the per-
formance of the prediction units, for each application we
plot the memory access pattern followed by fault plots.
First we show the characteristic access pattern of each of
the applications in Figures 3a, 4a, and 5a. Then the net-
work faults incurred for the non-predictive case (Figures
3b, 4b, and 5b) followed by the network faults incurred
by the system using the PUs (Figures 3c-e, 4c-e, and 5c-
e). In this paper we report on the best results of each of
the predictors for each application, across the space of the
system and predictor parameters tested. For the complete
results see (Sakr, 96b).

4.1  2-D RELAXATION

Figure 3a shows 8697 access vectors which depict the
access behavior of the 2-D Relaxation algorithm, the
large discontinuity in the pattern is a no-memory-access
period which is a characteristic of the algorithm. The



access patterns exhibit a stair-like behavior, where each
stair discontinuity reflects a change in the memory module
access. For this access pattern the first order Markov pre-
dictor performed the best of the three prediction units
tested. The second order Markov predictor shows
improved performance over the first order only for the 1
prediction case. In general, increasing the number of pre-
dictions used by the state sequence router enhanced per-
formance while increasing the size of the state sequence
(k) does not for this particular application. For the Linear
predictor, increasing the history or the number of predic-

tions used as hints does not enhance performance. On the
other hand, increasingk helps increase the total number of
network faults eliminated. We tested many TDNN config-
urations, the performance of the TDNN in predicting this
pattern relied heavily on the number of nodes in the hidden
layer. Increasing the history used (tapped-delay line) does
not improve performance as much as increasing the size of
the hidden layer. Using a large k is also crucial in fault
elimination for this pattern. Figure 3b plots the network
faults incurred as impulses for the non-predictive case.
The other fault plots show the best performance of the on-
line predictors for the 2-D relaxation algorithm. The first
order Markov predictor using 3 predictions and ak of size
3 eliminated 96% of the network faults. It performs best
for this pattern since the total number of non-zero proba-
bilities is small (three), and using the top three probabili-
ties is enough to predict almost perfectly and eliminate all
faults (Figure 3c). The best performance of the Linear pre-
dictor was achieved by using 1 past access vector, 2 pre-
dictions and ak of size 6 eliminating 95% of all faults.
Compared to the Markov predictor, the Linear predictor
needs a few more training iterations before its predictions
start to greatly reduce the number of faults (Figure 3d).
The TDNN with a hidden layer of 30 nodes, a tapped
delay line of size 2 andk of size 7 produced its best result
eliminating 71% of the network faults, shown in Figure 3e.

4.2  MATRIX MULTIPLY

The matrix multiply application exhibits a more complex
pattern since each processor accesses the memory mod-
ules in a less uniform fashion than the 2-D relaxation algo-
rithm. Figure 4a shows the 11561 vector access pattern.
Since this application exhibits a complex access pattern
the first and second order Markov predictors cannot cap-
ture and predict the access pattern correctly. Increasing the
number of predictions ork does not enhance overall per-
formance. The performance of the Linear predictor is sim-
ilar to that of the Markov predictor for this application.
Varying the history, ork, or the number of predictions does
not improve performance. On the other hand, the TDNN
produces marginally better results. The TDNN performs
best with a hidden layer of 10 nodes, using 2 predictions
and ak of size 7 achieving 30% fault reduction. However,
increasing the size of the hidden layer hinders the perfor-
mance of the TDNN. Figures 4b-e show the best perfor-
mance of all three prediction units for this access pattern.
In this case, the Markov predictor performs poorly since
the probabilities are of equal values which increases the
number of wrong predictions. Specifically, the second
order Markov predictor using 4 predictions and ak of size
5 eliminated 6% of the faults. The best performance of the
Linear predictor, eliminating 1% of the faults, was
achieved using 10 past access vectors, 1prediction and ak
of size 6. The linear predictor is not able to find a linear
combination of the past accesses to predict the next access
well. However, the TDNN still achieves a moderate reduc-
tion in the number of faults.
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Figure 3: (a) The memory access pattern of the 2-D
relaxation algorithm for Processor P0. (b) The number of
network faults incurred without predictions. (c) Number
of network faults using the Markov PU. (d) Number of
network faults using the Linear PU. (e) Number of
network faults using the TDNN PU.
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4.3  FAST FOURIER TRANSFORM

The FFT application produces the memory access pattern
shown in Figure 5a. The Markov predictor is capable of
capturing and predicting this pattern thus eliminating
almost all the faults incurred by the state sequence router.
The second order Markov captures the pattern of access
thus producing better results compared to the first order
Markov. Increasing the number of predictions used is essen-
tial for good performance while increasingk does not affect
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Figure 4: (a) The memory access pattern of the matrix
multiply for Processor P0. (b) The number of network
faults incurred without predictions. (c) Number of
network faults using the Markov PU. (d) Number of
network faults using the Linear PU. (e) Number of
network faults using the TDNN PU.
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the percentage of fault elimination for both the first and
second order Markov predictors. The Linear predictor pro-
duces its best results when using the least history, the least
number of predictions and ak of size 6. Increasing the his-
tory used or the number of predictions does not boost per-
formance. The TDNN is capable of learning and
predicting the access pattern of the FFT. A hidden layer
consisting of 10 nodes provides better performance than
the TDNN with a larger hidden layer. A number of predic-
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Figure 5: (a) The memory access pattern of the FFT for
Processor P5. (b) The number of network faults
incurred without predictions. (c) Number of network
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faults using the Linear PU. (e) Number of network
faults using the TDNN PU.
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tions of either 2 or 3 with ak of size 6 or 7 are needed for
good performance. Figures 5b-e show the best results of
the PUs for this access pattern. Since the FFT algorithm
exhibits a simple access pattern, the second order Markov
predictor is able to capture the pattern and predict well
eliminating 95% of the faults using the top four predic-
tions and ak of size 4. The Linear predictor using 1 past
access vector, 1 prediction and ak of size 6 is capable of
eliminating some, 34%, of the network faults. The TDNN
with 10 nodes in the hidden layer, a tapped delay line of
size 10, using the top 2 predictions and ak of size 6 elimi-
nated 45% of the faults. The TDNN performs better than
the Linear predictor for this pattern but not better than the
Markov.

5   SUMMARY AND CONCLUSIONS

Completely connected interconnection networks (INs) are
not feasible in large scale multiprocessor systems because
of their high complexity and soaring cost. Accordingly, we
utilize less expensive reconfigurable interconnection net-
works that scale well but suffer from high overhead due to
control latency. Control latency is the time delay incurred
by the network controller to determine a new desired IN
configuration and to physically establish the paths in the
network. Each reconfiguration request (network fault) is
triggered when the current network configuration fails to
satisfy a processor’s memory access. These requests are
performed on a demand driven basis. However, memory
access patterns of multiprocessor systems executing paral-
lel scientific applications exhibit a lot of repetitiveness due
to loops which are a characteristic of such applications.
Hence, in this work we study how three learning methods
perform at learning and predicting these access patterns
on-line. Correct prediction of the access patterns allows
anticipatory reconfiguration of the IN and thereby satisfy
the forthcoming memory accesses preventing a network
fault. Thus, the average control latency L is hidden and
consequently overall communication latency is reduced.

The three on-line prediction methods tested are: a first and
a second order Markov predictor; a linear prediction
method; and a time delay neural network (TDNN). We
train the prediction methods using the access patterns of
three parallel scientific applications: a 2D relaxation algo-
rithm; a matrix multiply; and a Fast Fourier Transform
(FFT). The multiprocessor model used is an 8 processor
32 memory module shared memory system with a state
sequence router as the reconfigurable interconnection con-
troller.

The experiments show that coupling state sequence rout-
ing with different types of on-line prediction methods can
decrease the number of memory access faults across dif-
ferent applications with some methods being more effec-
tive than others. The best results of the prediction methods
for the access patterns tested are as follows (Table 1). For
the 2D relaxation algorithm the first order Markov predic-
tor eliminates 96% of the faults; the Linear predictor pre-

vents 95% of the faults; and the TDNN removes 71% of
the faults. While for the matrix multiply: the second order
Markov predictor eliminates 6% of the faults; the linear
predictor removes 1% of the faults; and the TDNN pre-
vents 30% of the network faults from taking place. Finally,
using the access patterns of the FFT: the second order
Markov predictor prevents 95% of the network faults; the
linear predictor eliminates 34% of the faults; and the
TDNN removes 45% of the network faults. As expected,
different predictors perform best on different applications.
From visual inspection of the access patterns (shown in
Figures 3a, 4a, and 5a), one could say that the access pat-
terns of different applications vary in complexity from the
2-D relaxation being the most simple to the matrix multi-
ply the most complex. All prediction methods perform
well on the applications with the simple access patterns.
On the other hand, for very complex patterns, the Markov
and Linear prediction methods perform very poorly and
TDNN gives uniformly good results.

Given the multiprocessing environment, different applica-
tions exhibit very different patterns and a technique that
will predict well across patterns is more appealing than a
technique that performs best for specific patterns. Thus,
we hypothesize that the TDNN has the best chance of
adapting to different memory access patterns from the
variety of real applications. However, it could be feasible
to use all prediction methods in a mixture of experts model
(Jordan, 94) and use the best predictor available.

Future work should address more realistic simulation of
the multiprocessor environment, such as the effects of
incorporating runtime delays due to memory and network
contention in the memory access patterns and how these
prediction methods affect actual performance. We plan to
test the performance of different machine learning tech-
niques and other prediction methods. Also, it would be
interesting to investigate the applicability of prediction
techniques to the general problem of latency hiding at all
levels of the memory hierarchy. Another open question is
how will these prediction methods be efficiently imple-
mented in hardware and their results effectively used. For
example how and what is the effect of memory fault pre-
diction in the actual speedup of applications on a multipro-
cessor?

Table 1: Percentage of faults eliminated for the three
best learning techniques tested using the access
patterns of three parallel applications

Markov
Predictor

Linear
Predictor

TDNN
Predictor

2-D Relaxation 96% 95% 71%

Matrix Multiply 6% 1% 30%

FFT 95% 34% 45%
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