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Abstract discovery have included viral marketing [6], collaborativ
filtering,and organizational structure analysis [17].
Discovering communities from documents involved in ~ Well known graph-theoretic methods include spectral
social discourse is an important topic in social network graph partitioning [14, 4], hierarchical community diseov
analysis, enabling greater understanding of the relation- ery [19], and clusterinbbased on random walks [11]. Spec-
ships among actors within a social network as well as top- tral graph partitioning is a classical spectral method base
ical trends in communication. This paper studies the dis- on the Laplacian of the graph adjacency matrix [14, 4], with
covery of communities from communication documents pro-a characteristic focus on the design of cost functions for pa
duced over time, including the discovery of temporal trends titioning graphs. Hierarchical community discovery seeks
in community memberships. We first formulate static com-to merge the vertices and edges based on the “closeness” be-
munity discovery at a single time period as a tripartite tween vertices measured by distances on graphs, such as the
graph partitioning problem. Then we propose to discover length of the shortest paths or the diffusion distance [19].
the temporal communities by threading the statically de- Finally, random walk-based clustering described in [11] ap
rived communities in different time periods using a new plies random walks to the graphs iteratively such that the
constrained partitioning algorithm, which partitions gras edge weight between two vertices is modified based on the
based on topology as well as prior information regarding probabilities that the random walk will circle back to one of
vertex membership. We evaluate the proposed approach orthe vertices through the other.
synthetic datasets and a real-world dataset prepared from  Despite the wide range of choices for partitioning ho-
the CiteSeer computer science research corpus. Quantitaimogeneous networks, research on discovering communi-
tive evaluation on synthetic data demonstrates an high dis-ties from heterogeneous social networks is rather limited
covery precision and an improvement over the generalized?. Treating heterogeneous graphs the same as homogeneous
normalized cut approach. Qualitative evaluation on Cite- ones leads to difficulty in normalization since differenged
Seer data shows the effectiveness of the proposed approactypes may be incomparable [8]. However, observations of
in author community discovery and community summariza-real-world networks often indicate diverse network struc-
tion in research documents. tures, many of which can be modeled as heterogeneous net-
works of social actors and the other node types such as doc-
uments (e.g. emails, blogs, collaborative publications) o
1 Introduction social events. In this paper, we are particularly inteikste
communication documents as these data sources represent
the most widely available sources of information regarding
social networks.
Discovering communities from documents is a recent
trend. Popular approaches are either content-based or
graph-theoretic. One popular content-based approach is

Social network analysis (SNA) is an established field in
sociology recently becoming popular for computer scien-
tists [1, 10], which is motivated in part by the increasing
amount of personal and social information available on-
line. Community discovery is a classical problem in so-
cial network analysis, where the goal is to discover related
groups of social actors such that they are intra-group close
and inter-group loose [18]. The applications of community ¢

1in this paper, the term “clustering” and “community discoyeare
ed interchangably unless otherwise noted.

2Here we define a heterogeneous graph as a graph where therarare
*Accepted at IEEE ICDM 2007 types of vertices and edges.




to mine information via probabilistic generative modeling 4]. based on . Spectral methods have been applied in var-
where the social actors or communities are considered asous domains including image segmentations [16] and text
variables in the generation of document content [15, 22]. analysis [21, 5, 3, 8, 12]. The principal aim of spectral grap
Alternatively, a graph-theoretic approach can consider th partitioning is to minimize the cost of cutting graphs as a
documents as an additional set of vertices connected to aufunction of the Laplacian of the graph adjacency matrix.
thors in a bipartite [21] or tripartite [8] graph structure. The partitioning embeds a graph into a low-dimensional
These methods, however, work with only a static snapshotsubspace subject to the minimal partitioning cost imposed
of network data. The issues of document time and the tem-by the graph adjacency matrix. After embedding the graph
poral trends in communitiy development are generally over- into the subspace, the clustering can be performed via an ad-
looked. ditional light-weight clustering algorithm (such &sneans)

This paper addresses the community discovery problemor by recursively searching for the binary cutting points][2
in a temporal heterogeneous social network consisting ofon the subspace axes. One traditional cost function uses the
authors, document content, and the venues in which thesum of weights on the edges between clusters [14]; how-
documents are published, all observed over time. We pro-ever, this simple approach can bias towards unbalanced cut-
pose a new framework that addresses the two main chalting points. Recent work proposes variants to the cost func-
lenges in this new problem: (a) handling of the heteroge- tion, including ratio cut, normalized cut, and others (a sur
nous network and (b) incorporation of the temporal aspectvey can be foundin [4]). The most popular cost function for
of the data. For (a), we formulate community discovery in partitioning graphs is the Normalized cut (NCut) [16]. The
a heterogeneous social network (the social network is a netNCut cost function was originally applied to partitioning
work of authors, words, and publication venues) as a tripar-homogeneous or bipartite graphs [16, 21, 3]. Due to grow-
tite graph partitioning problem. A normalized cut (NCut) ing interest in analyzing correlated heterogeneous graphs
cost function is defined over the partitions. We show that recent work generalizes NCut to the case of star-structured
partitioning a tripartite graph is a quadratically conistea tri-partite graphs and a solution has been proposed based on
quadratic programming (QCQP) problem. For (b), we intro- semidefinite programming [8]. Another recent work intro-
duce a new method for incorporating prior knowledge, such duces prior knowledge into the cost function so the parti-
as prior community membership, into the current discovery tioning will satisfy minimal violation of prior knowledgesa
process. The discovery of temporal communities is thenwell [12].
performed by threading communities discovered at consec-
utive time periods using the output from the previous period
as prior knowledge. At each time period, the constrained
graph partitioning method is able to capture both the ctirren
graph topology and historical information regarding the ve
tex membership. This problem is efficiently solved using a
proposed fractional orthogonal iteration algorithm (@ast
of pursuing the semidefinite program (SDP) as in [8], which
is computationally intractable). We evaluate the proposed
approach on synthetic datasets with various settings erord
to explore the properties of the new algorithm. A great im-
provement in clustering precision is observed. In addjtion
we show the results of applying this method to a sample

dataset obtained from CiteSeer (http://citeseer.istgoky). )
(http ingly, a recent research trend proposes the content-based

The rest of this paper is organized as follows: Sec. 2in- analysis of social networks where specific goals include
troduces related work; Sec. 3 defines the problem and the y P 9

. . community discovery [22], information flow detection [10],
typical structure of heterogenous social networks that we ) :
: o and tracking group evolution [1]. These works leverage text

are interested in; Sec. 4 and Sec. 5 propose a framework . " . ;

L . . . mining to interpret and understand the changes of topic dy-
for partitioning temporal tripartite graphs; Sec. 6 gives t N : L

. . o2 namics in documents as well as the dynamics of social ties.
approximate solution to partitioning; Sec. 7 presents e e

. . Despite the increasing importance of mining communica-
perimental results and Sec. 8 concludes with comments on, :
future work. ion documents, the analysis of temporal aspects of commu-

nication is in its early stage. Very often, temporal commu-
nity discovery is performed by periodically clusteringarst
2 Related Work and examining the extracted temporal clusters [13]. There
Our work overlaps with two lines of research: (1) spec- has been little work on discovering the communities of so-
tral graph partitioning and (2) social community discovery cial actors and documents from temporally correlated text
Spectral graph partitioning: Spectral graph partition-  streams, that is, explicitithreadingcommunities from dif-
ing is a classical spectral method for partitioning gradidls [  ferent time periods.

Document-based community discovery:Discovering
communities in networks based on documents is an impor-
tant topic of social network analysis, which focuses on an-
alyzing the relationships between social actors in a né&twor
of inter-relations [18]. Traditional research has mosty f
cused on topological properties of social networks. How-
ever, real social networks are often embedded in particular
social contexts defined by specific information carriers. Fo
example, one of the most common information carriers in
social networks is theommunication documen®ccord-



3 Problem Statement - TN

This paper considers social networks of researchers in
the context of their collaborations on published work. The
data in focus includes the co-occurrences of authors with
documents, documents with words, and documents with
venues. All data are associated with time stamps, which t1 t2 t3
are the years of publication. The data is collapsed on docu- ) )
ments yielding the (1) author-word co-occurrences and (2) Figure 2. A dynamic social network. Three snap-
word-venue co-occurrences, over a certain amount of time.  Shots are included in the network with various num-
Thus, within each time period there are at two correlated ~ Pers of authors (denoted by triangles), venues (de-
bipartite graphs@G (V, Vy', Wyy ) andG(Vy, Vz, Wy 2), noted by rectangles), and words (denoted by circles).
whereVy is the author setly is the word setVy is the
venue set)Vxy is the bipartite edge weights betweEl

andVy, andWy 7 is the edge weights fdry andV. Here A dynamic social network is illustrated in Fig. 2. Three
G(Vx,Vy,Wxy) andG(Vy, Vz, Wy z) share the vertex  gnanshots are included, each having different network stru

setVy. NameG(Vx, Vy, Wxy) andG(Vy,Vz, Wyz) 8 yres. It can be seen that each static social network is a bi-
a bipartite graph couplewhich can be seen as a general- partite graph couple.

ized social network of authors, words, and documents. Two The goal of this paper is to cluster authors, words and
static communities in such a social network are illustrated venues given their changing relationships over time. In

in Fig. 2, where &static commgnit;yat a specific time, IS the clustering results, one can easily see how a particular
defined on the snapshot below: community evolves in its members and topical interest, ex-

Definition 1 A static community in a static social network Pressed in terms of words. The temporal communities are
is a Composite of C|ose|y associated authorsy Wordsy anddiscovered via threading the discovery of static communi-
venues. Entities within the same community are closely re-ties at each time period. The desired number of communi-
lated while entities in different communities are loosedy a  tiesk is assumed and given as a parameter.

sociated if at all. . L
4 Community Partitioning

We start from the discovery of static communities from
a static social network. Suppose there are two bipar-
tite graphs,Gxy = G(Vx,Vy,Wxy) and Gyz =
G(Wy,Vz,Wyz), whereVx is the author setly is the
word set, andV; is the venue setiWxy € RTnxxny
Figure 1. A static social network. triangles denote is a matrix where the elements represent the number of
the authors, circles denote the words, and rectangles Cco-occurrences of an author and a word; dmg; €
denote the venues. The graph between authors and R*"¥*"# is a matrix whose elements are the number of
words is inferred from the document authorship and ~ co-occurrences of a word and a venug (ny, nz are the
the graph between words and venues is based on the size ofVx, Vy, Vz). NoteGxy andGy z sharely .
publication records of documents. Two static com- Consider a community with two types of vertices from

munities are separated by the dashed line. Vx andVy, say which is represented by two subs§fs
andS}-/. The weight of the community is:

Over the entire time period, the underlying social net- W(SX,sY) = Z w (1)
. . . . 7 0 J u,v-
work structure is dynamic. Accordingly, instead of observ-
ing a single static social network over the entire data set, a
sequence of static social networks of various structures isgjyen  as the desired number of communities, the cost

generated, with consecutive snapshots showing significanfynction ofNormalized Cut (NCjs defined as [21]:
overlap of entities. The definition of a temporal community

thus embody the temporal aspects of the network: k W(SX S_Y)+W(S_X SY)
Jo = i) i M4
’ ; W(SE.Y) +W(X,57)

uGSiX,UGSJY

(2)

Definition 2 A temporal community in a dynamic social
network is a threaded sequence of static communities at
each time period. In a temporal community, the structure whereS;¥, S} are the subsets 6fx andVs- in community
of a static community at a specific time depends on the pre-i; S, SY are the subsets dfy andV4 not in community
viousN temporal networks, wherll is a parameter that  i. The sets{S}*_,, {SY }*_, that minimize the cost
can be defined as therderof the temporal community. belong to the discoverddcommunities.




Now define several indicator matrices. L& =
[X1,..., X&), whereX; is an indicator vector of whether .
the corresponding element belongs to commuijtwith ming y 5 J3
1 indicating so or0 otherwise. Similarly, we hav® = _ E o T % -1
Yi,...Y:] andZ = [Z4, ..., Zu). = maxgy 7 A2 ier Xi D Wy Dy Vi

Define Dxy and Dy as diagonal matrices where the —(1-2X) Zle YiTpgéwyngézi 7)
elements are the sums of rowsliixyy andWy ;. Define _
Dy x andD zy as diagonal matrices where elements are the subject to
sums of columns iWxy andWy x. After some manipu-

e e ere o
lations, we can rewrite Eq. 2 as: X=Xy, X, XX =1 (8)
Y =[Y1,.. %], YIV =1, 9)
Z =121, 2, 272 =T, (10)

Zk XI'Dxy Xi4Y Dy xYi—2XTWxyY; 3)

J2 i=1 X Dxy X;+Y, DyxY;

. X T Wy Y, wherel is an identit.y matrix. . . .

k= i Xy XV T Dy Y: (4) __Now let us rewrite the problem in matrix form. Define
) ) Wxy = D;%nyD;i and Wyz = D;ZWyzD;?/

The problem of searching for best solutions to the above pefiners — [U1, ..., Us], wherelU; = [Xi:r’yi:r’ Z?]T; Let

minimization problem has been shown to be NP-hard. In inere be a matris/ such that:

order to obtain a solution efficiently, prior work relaxes th

elements inX; andY; to real values instead of the discrete

set{0, 1} [21]. Extending this work, we further scalg; 0 AWy 0

andY; to the denominator. In particular, assumiXg = M = {W;Y 0 1— /\)/Wyz . (1)
_1 1 A A A ~ ~ —

D3 X;andY; = Dy.3Y;, we let XX, = V1Y, = 1. 0 (1=NWt, 0

Thus,J> becomes:
It is easy to verify that the cost function in Eq. 7 is

k ) ) 1UTMU;. The problem thus becomes to minimize the
Jo=k=Y XD iWxyDy3V. (5) trace of the matrix (The trace of a square matrix is defined
i=1 as the sum of the diagonal elements):
Here D;(éWXyD;é is in fact the normalized edge mUaxtr(UTMU) (12)

weight matrix. The minimization cost functios, is car- )
ried out overX; andY; fori = 1,..., k. Traditionally, the ~ Subjectto
different minimizers are assumed to be orthogonal to each ST ST ATIT
other [20], i.e. XTX = IandX”X = I. We impose the o U=y 2T (13)
same constraint on our solution. X,Y, Z satisfy Eq. 8 - Eq. 10 (14)
Now let us generalize the cost function for a bipartite
graph couple, where we have an additional set of vertices
Z and the edge weights witti in Wy . Similarly, define
X = [)gl, ';"Xkl’ YA = [Y:l, .;.,Yk] andZ = [Zl, ey Zk],
whereXTX = YTY = Z7Z = 1. Let Jxy be the cost
function of partitioning graptG xy and Jy z be the cost e
function for Gy z. We introduce a parametarto balance 5 Partitioning Temporal Graphs
the costs on both graphs. Based on Eq. 5, we define the new The problem of community discovery has been formu-
cost function/s; on the bipartite graph couple as: lated as a graph partitioning issue. Next we present a con-
strained graph partitioning method that threads community
discovery across consecutive time periods.

Here the optimization problem is a quadratically con-
strained quadratic programming problem [2]. Note that
Eg. 8 - Eg. 10 is not equivalent 67U = I. Constraints
onU apply to its segments (i.6X, Y, Z) respectively.

J3 = /\ny-i-(l—)\)Jyz

X ) - 5.1 Graphs with consistent vertices
= k=AY XTD 3 Wxy Dy iV

. . L We first focus on the case where graphs have consistent
~(1 =N YDy zWyzD,2Z;  (6)  vertices. For each time period, we havg andU, as de-
scribed in Eg. 11 and Eq. 8 - Eq. 10, where 1,...,T are
where the second and third terms represent the cost functhe time stamps anti* contains the community member-

tions onG xy andGy z. o ship of authors, words, and venues. Assume that the graphs
Trjus, the minimization of cost functiofy over X, Y, have consistent vertices; thus, &ll have the same dimen-
andZ becomes a maximization of the negative terny4n sions. Now, let us define a cost function on the difference



betweerl/* andU* for an arbitrary time stamp pai, ¢;, X,Y,andZ. Second, some new vertices may appear in the
denoted:(U*, Ut/ ). The discovery of community structure current time period. In this case, we have no prior knowl-

at time ¢ seeks to minimize the weighted sum of the dis- edge about their membership. Therefore, we require zero
tances between the current and previous community mem-co-variances of them with others, corresponding to zeros in

bership back ta — ¢: the corresponding rows. Name this second step expand():
t—1 T Tt T 1T 71T T
U" =expandU’) = [X",0,Y"",0,Z27,0]", 20
Ir[}itn Z arc(U™,UY) (15) pandl’) = | ] (20)
T=t=3 where[ X", 0]7, [Y'T,0]", and[Z'T,0]T respectively cor-

wherea, is the weight on the distance to the community respond to the newly observédf, Y, andY?; all 0’s has
membership at time periods ago. The weights on different  the appropriate number of rows akdcolumns. We then
historic periods are prescribed parameters. Hereafter, fo arrive at the new reference covariance mattix, U) as:
simplicity, we concern ourselves only with the first-order
dependency case whefe= 1 anda,, = 1. c=u"u"", (21)

A key issue is the design of the cost functle(rii] U).
Here we let the cost function be the negative cosine dis-Which leads to the new cost functiet’, ') onU and ref-
tance between two subspaces. SupposE, andZ arethe  erencel/ defined asi—c(U, U) == tr(U”CU), whereC
reference subspaces af, Y, Z. We know that|| X ||? = is givenin Eq. 19 - Eq. 21.
[YV]|2 = ||Z||*> = 1. Thus, the square of cosine distances  Note the handling of new vertices here. Since the refer-

between the desired subspace and the reference subspa@@ceU" still has values in the rows corresponding to the old
are respectively X7 X |2, [|[YTY |2, and|| ZT Z||2. In ad- vertices, these previously observed vertices will be made
dition, we know that the cosine distances are witiini]. consistent with the previous period. On the other hand, the
We thus seek to maximize the cosine distances to minimizenew vertices will not be affected by such prior knowledge of
the cost imposed by the distance from the reference subihe previous time period because of the zeros in the rest of

spaces. In part|cu|ar define the cost functt()ﬁ’ U) UI/ To see thlS note that tthTCU) has zero dlagonals
in the indices of those newly observed vertices regardliess o

the values ot/ in the corresponding rows.
Given the above, the combined community discovery
problem at each time period is written as:

—c(U,U) = al| X" X|* + BIYTY | +4112" Z|* (16)
=atr(X"XXTX)+80(Y'YYTY) + 4127 227 Z) (A7)
=tr(UTUU"U), (18)

whereU = [/aXT,BYT, /7277, a, 3 andy are the

weight parameters of the membership differences in au- min J = min J3 + c(U,U)

; g .

thor;, words, and_venues. Here, notice th/df is es- = maxtr(UTMU) + t(UTCU)

sentially the covariance matrix between the vertices in the U

reference time period. Since we have assumed consistent = maxtr(UT (M + C)U) (22)
U

vertices in the graphs across different time periods, we es-
sentially minimize the the conflicts between the discovered gypject to
U and the referenced covariance.

_vT vT 7117
5.2 Graphs with evolving vertices N v N (X7, Y™, 27 (23)
X,Y, Z satisfy Eq. 8 - Eq. 10 (24)
I\llqw we gt;_eneralllize thtta_ previous sec;'.[ion to gr?jphs with M is given in Eq. 11 (25)
evolving vertices. In practice, some vertices may disappea - 7 - o
and other new ones may show up, thuslthebtained from v - [VaX™, \/BY V2] (26)
previous period can disagree with the dimensionality of the Cis given by Eqg. 19 - Eq. 21 (27)
U in the current time period. We introduce an additional
step to adapt/ to address this issue. wherea, 8 and~ are the weight parameters for the mem-
First, some vertices from previous time period may dis- bership differences in authors, words, and venties the
appear. Since each vertex corresponds to a rol,ime reference membership matrix. We arrive at a quadratically

can delete these rows frob, forming a matrix with same ~ constrained quadratic programming problem.
number of columns but a smaller number of rows, We o _ _
call the first step shrink(). Thus we have: 6 Efficient Approximate Solutions

, N T T T This section gives an efficient algorithm to solve the

U' = shrinkU) = [X™, Y™, 2" ] (19)  problem formulated in Eq. 22 - Eq. 27. It can be seen that
wherel" is the adapted subspace with disappeared verticesEq. 22 has a quadratic cost function of the maffixHere
removed.X’, Y’, andZ’ still correspond to the remaining  Eq. 22 can be rewritten as:



Algorithm 1 fractional orthogonal iteration

max Y U (M + C)U;) (28) LU= [vax®,vavT, 7277
U= 1 U’ — shrinkU) asin Eq. 19

1 U «— expendU’) as in Eq. 20

where theJ;’s are column vectors iy. We can see thatthis  4: ¢ — vru»”™

is a sum of a sequence of quadratic functions each corre-2 E‘%JZDJJ"I:Q%(A K
sponding to a subset of constraints in Eq. 23 - Eq. 27. Thus 7: fori = 1,2, 3, ... do
we have a sequence of quadratically constrained quadraticg_ [ ;f
programming (QCQP) sub-problems. Note these QCQP ™ P

problems are not isolated because their solution ve€fprs 9: g, ry — X // QR factorization

W N

— AxU

are required to be orthogonal. 10: Qv Ry « Y /I QR factorization
. 11: Qz Rz — Z Il QR factorization
For each QCQP sub-problem alone, there exists a stan- Qx

dard solution using semidefinite programming (SDP) [2]. 122 U« | Qv

For example, a related work [8] studied the binary clus- 13 .ngor wz

tering case and proposed an approximate solution using an4: U — M x U _ _ o

interior-point method. However, we note that our optimizer > 160 Kiheans o fo bt e desioq paruy 9 Where each rowide-
here is a matrix@( = [XT,Y 7, ZT]T) instead of a single

vector. Thus, to apply SDP on each column vector and com-

bine them together is overly complex. Nevertheless, one7  Experiments

might construct a very high-dimensional vector by columns

of U and still translate the problem into SDP, but difficulty § . " : ) ;
posed method in various conditions, including different

still arises from the exploding dimensionality of the prob- ; ) ) : )
edge density-to-noise ratio, various proportionXgfy/Z,

lem. Recall that/ € R(nx+ny+nz)xk whereny, ny, _ _ _
andnz are the numbers of authors, words, and venues. Thed|fferent settings oA, and different numbers of clusterg)(

translated SDP problem will havekgny + ny + nz)- Two connected graph&xy and Gy are generated for

dimensional vector as the minimizer (wittkgnx + ny + the pr_escnbecK and sizes ofX, Y aan' All .cllusters
nz) % k(nx +ny +nz) semidefinite matrix of constraints), contain the same number of entities with specified propor-

which can easily surpass the capacity of most SDP solvers.tions of X,Y,andZ. The densities of all the clusters are

Instead, we propose an efficient algorithm that searchesthe same, but the edge weights vary randomly. Random

for approximate solutions. The new algorithm is based on n_oise Is qddeq to the graph and density is d_etermined by the
algorithms for eigenvectors. First we are aware that the given noise-signal ratio p.arameters@. Settingnsr = 1

Eq. 22, without constraints, reaches the maximum wheny'elds a random g_raph without qluster structurce_s._?resum—
U contains the first eigenvectors of the symmetric ma- ably, the ‘?°m”_‘“”'W st_ructures in the grajt _d'”.“”'Sh

trix A — M — UUT. This is a standard result from ma- 25 the noise-signal ratio§r) grows. Lownsr indicates

trix theory [9]. In addition, we have'l ¢ {U|UTU — that graph partitioning will be easier. Tab# includes a

1, UTAU '< A+ + Ae, Where ;. ...\, are the complete list of parameters and their meanings.

A synthetic data generator was created to test the pro-

X - abbr. usages
first k largest eigenvalues od. Second, we seek to pre- Fsi fractional subspace iteration
serve the constraints as much as possible while maximizing par | partitioning static graphs usings:
~ . . i . . t-par partitioning temporal graphs usings:
J. We modify theorthogonal iterationmethod which is E number of clusters
used to calculate the eigenvector space without conssraint density | the edge density of the graph clusters _
. R . R . i nsr noise-signal ratio, noise density / cluster density
The idea is to incorporate the constraints into the claksica z/z the size of X / the size of Z
method. The new algorithnfractional orthogonal itera- A the weight parameter in Eq. 11

tion, is presented below:

Here eid A, k) calculates thé-dimensional eigenvector
space ofAd without constraints. This is the initial value for First, we focus on the clustering precision w.r.t. diffdren
the subsequent orthogonal iteration. In the algorithnp 8te  densities anchsr for £ = 2. As illustrated in Fig. 4 we
- step 11 produce the normalizé, Y andZ as specified  present four values ofsr, indicating increasing difficulty
in the constraints. Step 8 performs the power iteration asfor partitioning. In general, we observe that the precision
in the originalorthogonal iterationmethod for calculating  decreases assr grows. In each subfigure, we can see that
eigenvectors. Up to step 15, the algorithm has projectedthe clustering precision grows quickly as the graph clgster
the original bipartite graph couple into an approximite = become denser. On graphs with less noise, the precision
dimensional eigenspace. The distribution of the points in grows faster than on the highly noisy graphs. Compara-
the new space preserves the distribution of objects at thetively, the proposedsi algorithm outperforms the tradi-
current time period, in addition to imposing the community tional subspace iteratiomlgorithm (without consideration
membership from the last period. Then we itmeansto  of constraints) for differentsr. We are able to see that
cluster the heterogeneous objects as current communities. the special scaling introduced fiyi improves thesubspace

7.1 Precision w.r.t. graph conditions



iteration. The fsi usually outperformsubspace iteration
by a greater amount in the more difficult situations (large
nsr). All precisions are measured usikgneans with ran-
dom initial medians. For each case, fheneans is repeated
for 10 times and the averages are presented.

Second, we perfornfisi on different settings ot/ ra-
tios for a fixed setting oA. In real world datasets, the sizes
X andZ are usually not balanced. We compdgie with
subspace iteratiofor imbalanced data againgt: by vary-
ing thez/ z ratio. Fig. 5 shows different settings of = for
different densities. Recall that a largg= indicates that the
size of X is much greater than that ¢f. Without loss of
generality, we assume/z > 1. We can see that for sparse
graphs (small density) thgsi outperformssubspace itera-
tion greatly (illustrated in the subfigure on the bottom). In
simple cases (large density), tiie; generally outperforms
subspace iteratioffior small z/z; however, fsi underper-
forms subspace iteratiorslightly for smallz/z on dense
graphs. Note that real-world graphs are usually very sparse
thus, f si could be favored on many real-world datasets.

7.2 Precision w.r.t. parameter settings

Here we test different settings of parameters and their
impact on community discovery precision. A set of experi-
ments were run with different settings dfin differentx/z
ratios. The results illustrated in Fig. 6 show that the favor
able) are different when:/z varies. When theX outnum-
bersZ by a large margin, a greater value Jnis favored;
similarly, smallX performs better when there are féven-
tities compared witt¥ . This suggests that graphs with more
edges deserve a larger weight in the cost evaluation.

In order to better visualize the effect afwith different
x/z, we present the subspace scatter plots for diffekent
Note that herd X|/|Y|/|Z| = 50 : 200 : 5. The X out-
numberZ, indicated by a great/- ratio. In Fig. 3, we
show precisions foh = 0.5,0.8. Herek = 2 so we have
2-D subspaces. In this case, a laigeetter scales the edges
in Y Z and thus better embedsinto the subspace.

@X=05 (b) X =028
Figure 3. Subspace plots for different A when
|X|/|Y'|[/|Z| = 50:200:5. Different clusters are
colored differently. Entities of different types
have different markers (circles, dots, stars for
X,Y, Z). Here k = 2.

Finally, we comparé si with subspace iteratioon dif-
ferent numbers of clusters, at differesutbspace iteration
We can see that, for large densify; still outperformssub-
space iteratiorfor large numbers of clusters. However, the
subspace iteratiorseems to work better thafisi for the
case of many clusters on sparse graphs. In practice, we
can substitutefsi by recursively performing:-means us-
ing k = 2 for bi-partitioning the graph, similar to [21].
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Figure 4. The clustering precision w.r.t. edge
densities at different levels of noise-signal ra-
tio (nsr). The line with square markers is the
result for fsi. Here k = 2.
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Figure 5. The precision w.r.t. different x/z

ratio, at different edge density levels. Here

nsr 0.1, k = 2, A = 0.5. The lines with

square markers are fsi.

7.3 Higher precision using prior knowl-
edge

The fsi algorithm uses the discovery results from the
previous time period as prior knowledge for analyzing tem-
poral graphs. This knowledge is then used as an addi-
tional constraint while discovering communities in the-cur
rent time period. We simulate a 2-period temporal graph
where communities in the first time period are clearly de-
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Figure 6. The precision w.r.t. ), at different
x/z ratio. Here d = 0.3, nsr = 0.3, k = 2. The
line with square markers is the result for fsi.

Figure 7. The precision w.rt. k, at differ-
ent densities: density = 0.05, density = 0.25,
density = 0.45. The line with square markers
is the result for fsi.

fined and then the community structure becomes vague in
the second time period. The community membership from
the first time period is used as the prior knowledge in the

second time period. I e e e e

Parallel Computing

methods precisions methods | precisions Ariesinsions
parong, 0.9193 parongiz 0.8212 ofiions sobiioss tome i tova-zom 2000-2002 zoue-zc0d
par ongs 02123 || tparongi2 | 0.9169 ‘

average of the abovg  0.5658 (a) Publication number (b) Community size

Figure 8. Amount of publications and com-
munity size over time. Two different grouping
methods are shown, one by uniform group-
In Table 1, we illustrate the precisions of clustering on  ing of years and the other by proportional
the snapshots from each time period and the average preci- grouping.
sion. It can be seen that the static partitioning precisson i
very high ong; (0.9193) and very low orngz (0.2123): the
average of the two is abo01t5658. In addition, we perform
clustering on the graph over the complete time periods, o
taining a precision 00.8212. Then we perform the con-
strained partitioning t-par on the temporal graph, yigidin
the precisiorf).9169. The precision is much higher than per-
forming clustering periodically or on the complete graph.

Table 1. Different methods on temoral graphs.

p.7-4 Real-world dataset and experiments

A real-world data set for further experimentation was
generated by sampling documents from CiteSeer using
combined document metadata from CiteSeer, the ACM
Guide (http://portal.acm.org/guide.cfm), and the DBLP

A natural question is whether the community structure (http://www.informatik.uni-trier.de/ ley/db) for enheed
from previous time periods iglwaysmore reliable and in-  data accuracy and coverage. A set of venues was cho-
formative than the current period. We would like to first sen from five fields in computer science (software engi-
point out that the reference community membership doesneering, data mining, artificial intelligence, databases
not only encode the information from the immediate previ- distributed computing), such that data from each field in-
ous period but a combination of information from all previ- cluded at least 2000 distinct author names and at least ten
ous periods. This is due to the recursive applicationf «f years of significant coverage. All documents contained in
on the snapshot sequence. Therefore, one might assume th&iteSeer from each venue were obtained and the top 100
the community discovered based on all historical data cankeyphrases were extracted from each document using the
be more reliable compared with the discovery on the cur- KEA keyphrase extraction algorithm [7]. The KEA al-
rent single snapshot. In practice, we can also allow manualgorithm was trained on the CSTR corpus provided with
manipulation of entity membership to be input as the prior KEA containing 320 manually labeled abstracts from the
knowledge for thdirst time period in order to increase the  computer science domain, and keyphrases were allowed to
validity of this assumption. range from one to three words in length. Author names were



normalized such that only the initials of the first and mid- the emergence of new words, which presumably indicate
dle names were kept along with the full last name. The the evolution of interests of the community.

correlated bipartite graphs were then generated for each Finally, we show the changes in communities’ sizes over
year of data by linking authors with specific keyphrases andtime in Fig. 8(b). The size of a community is measured by
keyphrases with the venues in which they appeared. The fi-the number of distinct authors discovered within a parécul
nal dataset contained 12,677 authors and 45,295 keyphrasedsne period. The sizes of the four communities are scaled
from 30 distinct venues ranging over the years 1969 to 2004.to sum up to one.

The total number of documents used was 13,310.

Experiments on this data set began by empirically deter-8 Conclusion

mining the appropriate number of clusters. While itis an  1pig paper addresses an emerging problem of temporal
open prqblem to determine the _dimension _of_a subspace forcommunity discovery from communication documents, by
embedding a graph, we used simple heuristics. We ran thyhich one can observe the temporal trends in community
proposed community discovery algorithifis¢) with differ- membership over time. The problem is formulated as a
entk and chose thé corresponding to the smallest(or  yipartite graph partitioning problem with prior knowleelg
the greatesy = tr(U™ (M + C)U)) as in Eq. 22. We ob-  yyailaple of entity covariances. Temporal communities are
served that the initially grows dramatically ag increases,  iscovered by threading the partitioning of graphs in dif-
but grows ata much lower rate becomes large. ThUSWe  erent time periods, using a new constrained partitioning
chose the smalledt that gave the near maximum This  gigorithm. Evaluation of the new algorithm is carried out
gave usk = 4. on several synthetic datasets and a real-world dataset pre-

Then we ran the temporal community discovery (t-par) pared from CiteSeer. Experiments on synthetic data reveal
algorithm withk = 4 with various settings ok. For screen-  the properties of the new algorithm in various graph condi-
ing the results, we judge the quality of discovery by examin- tjons. Experiments on CiteSeer data show the effectiveness
ing the grouping of venues since their number is small. We of the proposed approach in author community discovery
observed that the quality is better for greatesupporting  and community summarization. Future work will seek to
the results from synthetic datasets that suggesttould be  track the community membership of individuals over time
set proportionally td.X | /| Z|. Here we sef = 0.6. and investigate the applicability of the proposed methods t

We observe that the resulting communities of authors, different domains such as viral marketing or recommenda-
venues, and words are well grouped. Four communities aretion services. Additionally, topical trends over time wok
discovered foartificial intelligence and machine learning  further investigated to track changing interests and event
database and data miningarallel and distributed comput-  within communities.
ing, andsoftware engineeringWe present two discovered
communities and their authors in Table 2 and Table 3. In References
our eXperimemSv we used the discovered venue set to rnan'[l] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. La@roup formation
ua||y produce Community labels. The keyphrases (ranked in large eocial networks: membership,A growth, and evotutitn KDD '06:

. . . Proceedings of the 12th ACM SIGKDD international confereois Knowledge

by frequﬁncy) were considered as the summarization of a discovery and data miningpages 44-54, New York, NY, USA, 2006. ACM
community. Press.

Table 2 includes a subset of authors discovered imthe [2] S. Boyd and L. VandenbergheConvex Optimization Cambridge University
tificial intelligence and machine learningpmmunity over Press, 2004.
six time periods. For presentation, we rank the authors by (3] 1. s. phillon, s. Mallela, and D. S. Modha. Informatiohepretic co-clustering.
theif number of papers within the corresponding periods. i 00 13 Fceeangs ofre it A SIGKO0 e arrerce
We can observe that the community memberships of au-  2003. ACM Press.
thors are relatlvely stable but Change over time. l.n the ex- [4] C.Ding. A tutorial on spectral clustering. Iroc. of the 25th International
periments, we observed that the top authors remained as the ~ conference on Machine Learninguly 2004.
“core” members of the correspondlqg_communlty and there 5] C. Ding, X. He, H. Zha, M. Gu, and H. . Simon. A min-max cugarithm
were many more authors who had joined and left from the for graph partitioning and data clustering. I®DM '01: Proceedings of Inter-
communities during these six time periods. The leftmost  national Conference on Data Miningages 107114, 2001.
column shows the top venues. Similarly, authors from the (g p. bomingos and M. Richardson. Mining the network valtiewstomers. In
database and data minir(g)mmunity are presented in Ta- KDD '01: Proceedings of the seventh ACM SIGKDD internatiar@nference
ble 3. on Knowledge discovery and data minjmgges 57-66. ACM Press, 2001.
~ We used the discovered clusters of words as the descrp-I'1 § Faic = oo b e, eetings ot the 16th micmational
tion for the corresponding communities. Summarizations Joint Conference on Artificial Intelligencpages 668673, 1999.
of two communities are presented in Table 4 and Tab_le _5. 8] B. Gao, T-Y. Liu, X. Zheng, Q.-S. Cheng, and W.-Y. Ma. Gistent bipar-
Words are ranked by their frequency of occurrence within tite graph co-partitioning for star-structured high-artieterogeneous data co-
the data. Those words that did not occur in the previous pe- clustering. InKDD '05: Proceeding of the eleventh ACM SIGKDD interna-

. . . e . tional conference on Knowledge discovery in data minpages 41-50, New
riod are highlighted. Over the six time periods, we can see Yok, NY, USA, 2005. ACM Press.



Venues 1969-94 1994-96 1996-98 1998-2000 2000-02 2002-04
M1 Jordan M I Jordan W L Johnson S Thrun D Koller A Blum
JMLR L P Kaelbling L P Kaelbling N Friedman C Boutilier A W Moore S Thrun
JY Halpern Z Ghahramani D Koller T Sandholm M | Jordan S Zilberstein
S P Singh S P Singh R E Schapire D Koller M L Littman P Stone
PAMI Z Ghahramani M K Warmuth Y Singer N Friedman S Thrun J Langford
M K Warmuth T G Dietterich R Dechter Y Singer D Schuurmans T Eiter
T G Dietterich T Dean T J Sejnowski | A Mccallum J Shawe-taylor| P Domingos
ICML T Dean Y Bengio H S Seung L P Kaelbling S P Singh A K Jain
Y Bengio P Smets D Poole S P Singh N Friedman S Baker
P Smets W Maass M I Jordan P R Cohen N Cristianini S Chawla
AAAI/IAAI W Maass V Tresp N Tishby R Khardon A Mccallum R Dechter
V Tresp D Weinshall R Greiner M J Kearns P Domingos C Guestrin
D Weinshall D Geiger Y Mansour K Nigam Y Bengio C Boutilier
UAI D Geiger S Kambhampati| M K Warmuth N Cristianini D Freitag M J Kearns
D Poole A Saffiotti Y Freund J Shawe-taylor AY Ng T Lukasiewicz
R E Schapire R E Schapire | D P Helmbold C Baral M K Warmuth A Demiriz
IJCAI S Kambhampati D S Nau C Boutilier A W Moore G E Hinton S P Singh
C Baumlckstroumim H A Simon M L Littman D Fox N Tishby D Koller
JAIR F Bacchus F Bacchus P Dayan D Roth A J Smola D Schuurmans
A Saffiotti D Poole AJ Grove M P Wellman G Raumltsch S Prabhakar

Table 2. Machine learning community during 1969-2004 in a CiteSeer sample.

Venues 1969-94 1994-96 1996-98 1998-2000 2000-02 2002-04
M Yannakakis M Yannakakis R Hull A Mendelson G Gottlob S Abiteboul
PODS V Vianu V Vianu A Mendelzon J Pareda_erjs \Y Vjanu ) L Popa
A Gupta JY Halpern Z M Zsoyoglu C Papadimitriou H Garcia-molina T Milo
Garciacute Garciacute H Garcia-molina | H Garcia-molina J Widom P G Kolaitis
J Widom J Widom D Suciu S Abiteboul AY Halevy PSYu
SIGMOD JF Ngughtqn H Garcia-molina A Silberschatz D Florescu C Falou‘tsos F Neven
H Garcia-molina J F Naughton AY Levy AY Levy D Suciu C Beeri
C Faloutsos C Faloutsos L Libkin R Motwani D Gunopulos R Rastogi
A Kemper J Hammer G Moerkotte LV S Lakshmanan S Lee JHan
VLDB K Ramamritham A BiIiri; S Sgshadri T Milo JHan D Srivastaval
G Moerkotte K Ramamritham S Abiteboul S Cluet W Fan M N Garofalakis
I'S Mumick A Kemper J Widom J Han R Rastogi J Widom
A Biliris C Baumlckstroumim R Agrawal D Suciu C S Jensen A'Y Halevy
SIGMOD Record J Hammer G Moerk_otte R Ramakrishnan JS Vitter_ H V Jagadish CLi
M Chen I S Mumick S Sudarshan R Rastogi D Kossmann J Madhavan
PSYu K Lin K Ramamritham G D Giacomo D Srivastava W Fan
T Milo S Berson A Kemper C S Jensen K Chakrabarti B Babcock
ICDM D Suciu D Suciu D FIorest_:u D Srivastava S Muthukrishnan CY Chan
JHan D Kossmann P Atzeni O Shehory D S Weld C Koch
K'Lin C A Knoblock M Benedikt M Lenzerini G D Giacomo J Gehrke
Table 3. Database community during 1969-2004 in a CiteSeer sample.
years words
learning model training probability value image set actiguut points output variables goal point values searckcgoli
1994-96 . X M e N L .
agent function selection examples error units distancevl@dge classification representation recognition regési t
1996-98 learningstate model image value training probabilihetwork set values variableslasserror points input point action
vector representatiosequenceagent searcHistribution recognition unitgandom output classification case robot
1998-00 learning model state value training set image probabiktiyes action points policy error search point sequetiens
noise function knowledge distribution classification roparameters estimatext optimal estimation accuracy representation
2000-02 learning model training set error image probabilitatrix point sequence distributidrernel classificatiomrandom features state
estimation function representatiorput accuracystrategy vectortextprediction parameters bounapproach selection
2002-04 learning model set probabilifyolicy points training sequence imagariables optimalalgorithm function matrixsearch

point errordistance erentrandom bound classification masbot estimate representation casgecteddistribution vector

Table 4. Frequent words in the machine learning community during 1994-2004 in a CiteSeer sample.

years words

1094-9¢ | Auery data database queries objeg:t path event cost typexesmirtion objects table class transaction local rulesesetient
join name formula update rule attribute attributes viewgsaglan read

1096-0g | Auery de_xta queries tjatabase opject tes information viev_v user attribute_s pages ok?jects rules join plan tabletgd
transaction type attributeonstraints page access server digquests real-time labelclient

109800 | Auery data queries_user information database pages r_uiegaimts_ plampath attribute_s attrit_)ute_ view join formula table
sources update objeasqueststrategydocuments level instance itemsule web spatialapplication

2000-02 data query queriepoints information pathcostxml database attlributealuespagestreg constraints table join plan
type objects pagelistance management example documeitttribute update labeled items documents web

2002-04 data quenynode queries xml path values tree database attributes tablex@atijoin name plaservice cache

objectsreturn selection constraints typ@atterns label mapping attribute tuples index itemo®t

Table 5. Most frequent words in the database community during 1994-2004 in a CiteSeer sample.
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