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Abstract

Discovering communities from documents involved in
social discourse is an important topic in social network
analysis, enabling greater understanding of the relation-
ships among actors within a social network as well as top-
ical trends in communication. This paper studies the dis-
covery of communities from communication documents pro-
duced over time, including the discovery of temporal trends
in community memberships. We first formulate static com-
munity discovery at a single time period as a tripartite
graph partitioning problem. Then we propose to discover
the temporal communities by threading the statically de-
rived communities in different time periods using a new
constrained partitioning algorithm, which partitions graphs
based on topology as well as prior information regarding
vertex membership. We evaluate the proposed approach on
synthetic datasets and a real-world dataset prepared from
the CiteSeer computer science research corpus. Quantita-
tive evaluation on synthetic data demonstrates an high dis-
covery precision and an improvement over the generalized
normalized cut approach. Qualitative evaluation on Cite-
Seer data shows the effectiveness of the proposed approach
in author community discovery and community summariza-
tion in research documents.

1 Introduction

Social network analysis (SNA) is an established field in
sociology recently becoming popular for computer scien-
tists [1, 10], which is motivated in part by the increasing
amount of personal and social information available on-
line. Community discovery is a classical problem in so-
cial network analysis, where the goal is to discover related
groups of social actors such that they are intra-group close
and inter-group loose [18]. The applications of community
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discovery have included viral marketing [6], collaborative
filtering,and organizational structure analysis [17].

Well known graph-theoretic methods include spectral
graph partitioning [14, 4], hierarchical community discov-
ery [19], and clustering1 based on random walks [11]. Spec-
tral graph partitioning is a classical spectral method based
on the Laplacian of the graph adjacency matrix [14, 4], with
a characteristic focus on the design of cost functions for par-
titioning graphs. Hierarchical community discovery seeks
to merge the vertices and edges based on the “closeness” be-
tween vertices measured by distances on graphs, such as the
length of the shortest paths or the diffusion distance [19].
Finally, random walk-based clustering described in [11] ap-
plies random walks to the graphs iteratively such that the
edge weight between two vertices is modified based on the
probabilities that the random walk will circle back to one of
the vertices through the other.

Despite the wide range of choices for partitioning ho-
mogeneous networks, research on discovering communi-
ties from heterogeneous social networks is rather limited
2. Treating heterogeneous graphs the same as homogeneous
ones leads to difficulty in normalization since different edge
types may be incomparable [8]. However, observations of
real-world networks often indicate diverse network struc-
tures, many of which can be modeled as heterogeneous net-
works of social actors and the other node types such as doc-
uments (e.g. emails, blogs, collaborative publications) or
social events. In this paper, we are particularly interested in
communication documents as these data sources represent
the most widely available sources of information regarding
social networks.

Discovering communities from documents is a recent
trend. Popular approaches are either content-based or
graph-theoretic. One popular content-based approach is

1In this paper, the term “clustering” and “community discovery” are
used interchangably unless otherwise noted.

2Here we define a heterogeneous graph as a graph where there aremany
types of vertices and edges.
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to mine information via probabilistic generative modeling,
where the social actors or communities are considered as
variables in the generation of document content [15, 22].
Alternatively, a graph-theoretic approach can consider the
documents as an additional set of vertices connected to au-
thors in a bipartite [21] or tripartite [8] graph structure.
These methods, however, work with only a static snapshot
of network data. The issues of document time and the tem-
poral trends in communitiy development are generally over-
looked.

This paper addresses the community discovery problem
in a temporal heterogeneous social network consisting of
authors, document content, and the venues in which the
documents are published, all observed over time. We pro-
pose a new framework that addresses the two main chal-
lenges in this new problem: (a) handling of the heteroge-
nous network and (b) incorporation of the temporal aspect
of the data. For (a), we formulate community discovery in
a heterogeneous social network (the social network is a net-
work of authors, words, and publication venues) as a tripar-
tite graph partitioning problem. A normalized cut (NCut)
cost function is defined over the partitions. We show that
partitioning a tripartite graph is a quadratically constrained
quadratic programming (QCQP) problem. For (b), we intro-
duce a new method for incorporating prior knowledge, such
as prior community membership, into the current discovery
process. The discovery of temporal communities is then
performed by threading communities discovered at consec-
utive time periods using the output from the previous period
as prior knowledge. At each time period, the constrained
graph partitioning method is able to capture both the current
graph topology and historical information regarding the ver-
tex membership. This problem is efficiently solved using a
proposed fractional orthogonal iteration algorithm (instead
of pursuing the semidefinite program (SDP) as in [8], which
is computationally intractable). We evaluate the proposed
approach on synthetic datasets with various settings in order
to explore the properties of the new algorithm. A great im-
provement in clustering precision is observed. In addition,
we show the results of applying this method to a sample
dataset obtained from CiteSeer (http://citeseer.ist.psu.edu).

The rest of this paper is organized as follows: Sec. 2 in-
troduces related work; Sec. 3 defines the problem and the
typical structure of heterogenous social networks that we
are interested in; Sec. 4 and Sec. 5 propose a framework
for partitioning temporal tripartite graphs; Sec. 6 gives the
approximate solution to partitioning; Sec. 7 presents the ex-
perimental results and Sec. 8 concludes with comments on
future work.

2 Related Work

Our work overlaps with two lines of research: (1) spec-
tral graph partitioning and (2) social community discovery.

Spectral graph partitioning: Spectral graph partition-
ing is a classical spectral method for partitioning graphs [14,

4]. based on . Spectral methods have been applied in var-
ious domains including image segmentations [16] and text
analysis [21, 5, 3, 8, 12]. The principal aim of spectral graph
partitioning is to minimize the cost of cutting graphs as a
function of the Laplacian of the graph adjacency matrix.
The partitioning embeds a graph into a low-dimensional
subspace subject to the minimal partitioning cost imposed
by the graph adjacency matrix. After embedding the graph
into the subspace, the clustering can be performed via an ad-
ditional light-weight clustering algorithm (such ask-means)
or by recursively searching for the binary cutting points [21]
on the subspace axes. One traditional cost function uses the
sum of weights on the edges between clusters [14]; how-
ever, this simple approach can bias towards unbalanced cut-
ting points. Recent work proposes variants to the cost func-
tion, including ratio cut, normalized cut, and others (a sur-
vey can be found in [4]). The most popular cost function for
partitioning graphs is the Normalized cut (NCut) [16]. The
NCut cost function was originally applied to partitioning
homogeneous or bipartite graphs [16, 21, 3]. Due to grow-
ing interest in analyzing correlated heterogeneous graphs,
recent work generalizes NCut to the case of star-structured
tri-partite graphs and a solution has been proposed based on
semidefinite programming [8]. Another recent work intro-
duces prior knowledge into the cost function so the parti-
tioning will satisfy minimal violation of prior knowledge as
well [12].

Document-based community discovery:Discovering
communities in networks based on documents is an impor-
tant topic of social network analysis, which focuses on an-
alyzing the relationships between social actors in a network
of inter-relations [18]. Traditional research has mostly fo-
cused on topological properties of social networks. How-
ever, real social networks are often embedded in particular
social contexts defined by specific information carriers. For
example, one of the most common information carriers in
social networks is thecommunication document. Accord-
ingly, a recent research trend proposes the content-based
analysis of social networks where specific goals include
community discovery [22], information flow detection [10],
and tracking group evolution [1]. These works leverage text
mining to interpret and understand the changes of topic dy-
namics in documents as well as the dynamics of social ties.
Despite the increasing importance of mining communica-
tion documents, the analysis of temporal aspects of commu-
nication is in its early stage. Very often, temporal commu-
nity discovery is performed by periodically clustering actors
and examining the extracted temporal clusters [13]. There
has been little work on discovering the communities of so-
cial actors and documents from temporally correlated text
streams, that is, explicitlythreadingcommunities from dif-
ferent time periods.
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3 Problem Statement
This paper considers social networks of researchers in

the context of their collaborations on published work. The
data in focus includes the co-occurrences of authors with
documents, documents with words, and documents with
venues. All data are associated with time stamps, which
are the years of publication. The data is collapsed on docu-
ments yielding the (1) author-word co-occurrences and (2)
word-venue co-occurrences, over a certain amount of time.
Thus, within each time period there are at two correlated
bipartite graphs,G(VX , VY , WXY ) andG(VY , VZ , WY Z),
whereVX is the author set,VY is the word set,VZ is the
venue set,WXY is the bipartite edge weights betweenVX

andVY , andWY Z is the edge weights forVY andVZ . Here
G(VX , VY , WXY ) andG(VY , VZ , WY Z) share the vertex
setVY . NameG(VX , VY , WXY ) andG(VY , VZ , WY Z) as
a bipartite graph couple, which can be seen as a general-
ized social network of authors, words, and documents. Two
static communities in such a social network are illustrated
in Fig. 2, where astatic community, at a specific time, is
defined on the snapshot below:

Definition 1 A static community in a static social network
is a composite of closely associated authors, words, and
venues. Entities within the same community are closely re-
lated while entities in different communities are loosely as-
sociated if at all.

Figure 1. A static social network. triangles denote
the authors, circles denote the words, and rectangles
denote the venues. The graph between authors and
words is inferred from the document authorship and
the graph between words and venues is based on the
publication records of documents. Two static com-
munities are separated by the dashed line.

Over the entire time period, the underlying social net-
work structure is dynamic. Accordingly, instead of observ-
ing a single static social network over the entire data set, a
sequence of static social networks of various structures is
generated, with consecutive snapshots showing significant
overlap of entities. The definition of a temporal community
thus embody the temporal aspects of the network:

Definition 2 A temporal community in a dynamic social
network is a threaded sequence of static communities at
each time period. In a temporal community, the structure
of a static community at a specific time depends on the pre-
viousN temporal networks, whereN is a parameter that
can be defined as theorderof the temporal community.

t1 t2 t3

Figure 2. A dynamic social network. Three snap-
shots are included in the network with various num-
bers of authors (denoted by triangles), venues (de-
noted by rectangles), and words (denoted by circles).

A dynamic social network is illustrated in Fig. 2. Three
snapshots are included, each having different network struc-
tures. It can be seen that each static social network is a bi-
partite graph couple.

The goal of this paper is to cluster authors, words and
venues given their changing relationships over time. In
the clustering results, one can easily see how a particular
community evolves in its members and topical interest, ex-
pressed in terms of words. The temporal communities are
discovered via threading the discovery of static communi-
ties at each time period. The desired number of communi-
tiesk is assumed and given as a parameter.

4 Community Partitioning
We start from the discovery of static communities from

a static social network. Suppose there are two bipar-
tite graphs,GXY = G(VX , VY , WXY ) and GY Z =
G(VY , VZ , WY Z), whereVX is the author set,VY is the
word set, andVZ is the venue set;WXY ∈ R

+nX×nY

is a matrix where the elements represent the number of
co-occurrences of an author and a word; andWY Z ∈
R

+nY ×nZ is a matrix whose elements are the number of
co-occurrences of a word and a venue (nX , nY , nZ are the
size ofVX , VY , VZ ). NoteGXY andGY Z shareVY .

Consider a community with two types of vertices from
VX andVY , say which is represented by two subsetsSX

i

andSY
j . The weight of the community is:

W (SX
i , SY

j ) =
∑

u∈SX
i

,v∈SY
j

wu,v. (1)

Given k as the desired number of communities, the cost
function ofNormalized Cut (NC)is defined as [21]:

J2 =

k∑

i=1

W (SX
i , SY

i ) + W (SX
i , SY

i )

W (SX
i , Y ) + W (X, SY

i )
(2)

whereSX
i , SY

i are the subsets ofVX andVY in community
i; SX

i , SY
i are the subsets ofVX andVY not in community

i. The sets{SX
i }k

i=1, {SY
i }k

i=1 that minimize the costJ2

belong to the discoveredk communities.
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Now define several indicator matrices. LetX =
[X1, ..., Xk], whereXi is an indicator vector of whether
the corresponding element belongs to communityi, with
1 indicating so or0 otherwise. Similarly, we haveY =
[Y1, ..., Yk] andZ = [Z1, ..., Zk].

DefineDXY andDY Z as diagonal matrices where the
elements are the sums of rows inWXY andWY Z . Define
DY X andDZY as diagonal matrices where elements are the
sums of columns inWXY andWY X . After some manipu-
lations, we can rewrite Eq. 2 as:

J2 =
∑k

i=1
XT

i DXY Xi+Y T
i DY XYi−2XT

i WXY Yi

XT
i DXY Xi+Y T

i DY XYi
(3)

= k − ∑k
i=1

2XT
i WXY Yi

XT
i

DXY Xi+Y T
i

DY XYi
. (4)

The problem of searching for best solutions to the above
minimization problem has been shown to be NP-hard. In
order to obtain a solution efficiently, prior work relaxes the
elements inXi andYi to real values instead of the discrete
set{0, 1} [21]. Extending this work, we further scaleXi

andYi to the denominator. In particular, assumingXi =

D
− 1

2

XY X̂i andYi = D
− 1

2

Y X Ŷi, we let X̂T
i X̂i = Ŷ T

i Ŷi = 1.
Thus,J2 becomes:

J2 = k −
k∑

i=1

X̂T
i D
− 1

2

XY WXY D
− 1

2

Y X Ŷi. (5)

Here D
− 1

2

XY WXY D
− 1

2

Y Z is in fact the normalized edge
weight matrix. The minimization cost functionJ2 is car-
ried out overX̂i andŶi for i = 1, ..., k. Traditionally, the
different minimizers are assumed to be orthogonal to each
other [20], i.e.X̂T X̂ = I andX̂T X̂ = I. We impose the
same constraint on our solution.

Now let us generalize the cost function for a bipartite
graph couple, where we have an additional set of vertices
Z and the edge weights withY in WY Z . Similarly, define
X̂ = [X̂1, ..., X̂k], Ŷ = [Ŷ1, ..., Ŷk] andẐ = [Ẑ1, ..., Ẑk],
whereX̂T X̂ = Ŷ T Ŷ = ẐT Ẑ = I. Let JXY be the cost
function of partitioning graphGXY andJY Z be the cost
function forGY Z . We introduce a parameterλ to balance
the costs on both graphs. Based on Eq. 5, we define the new
cost functionJ3 on the bipartite graph couple as:

J3 = λJXY + (1 − λ)JY Z

= k − λ
∑k

i=1 X̂T
i D
− 1

2

XY WXY D
− 1

2

Y X Ŷi

−(1 − λ)
∑k

i=1 Ŷ T
i D

− 1

2

Y ZWY ZD
− 1

2

ZY Ẑi (6)

where the second and third terms represent the cost func-
tions onGXY andGY Z .

Thus, the minimization of cost functionJ3 over X̂ , Ŷ ,
andẐ becomes a maximization of the negative term inJ3:

minX̂,Ŷ ,Ẑ J3

≡ maxX̂,Ŷ ,Ẑ λ
∑k

i=1 X̂T
i D
− 1

2

XY WXY D
− 1

2

Y X Ŷi

−(1 − λ)
∑k

i=1 Ŷ T
i D

− 1

2

Y ZWY ZD
− 1

2

ZY Ẑi (7)

subject to

X̂ = [X̂1, ...X̂k], X̂T X̂ = I; (8)

Ŷ = [Ŷ1, ..., Ŷk], Ŷ T Ŷ = I; (9)

Ẑ = [Ẑ1, ..., Ẑk], ẐT Ẑ = I; (10)

whereI is an identity matrix.
Now let us rewrite the problem in matrix form. Define

ŴXY = D
− 1

2

XY WXY D
− 1

2

Y X andŴY Z = D
− 1

2

Y ZWY ZD
− 1

2

ZY .
DefineU = [U1, ..., Uk], whereUi = [X̂T

i , Ŷ T
i , ẐT

i ]T ; Let
there be a matrixM such that:

M =




0 λŴXY 0

λŴT
XY 0 (1 − λ)ŴY Z

0 (1 − λ)ŴT
Y Z 0


 . (11)

It is easy to verify that the cost function in Eq. 7 is
1
2UT

i MUi. The problem thus becomes to minimize the
trace of the matrix (The trace of a square matrix is defined
as the sum of the diagonal elements):

max
U

tr(UT MU) (12)

subject to

U = [X̂T , Ŷ T , ẐT ]T (13)

X̂, Ŷ , Ẑ satisfy Eq. 8 - Eq. 10 (14)

Here the optimization problem is a quadratically con-
strained quadratic programming problem [2]. Note that
Eq. 8 - Eq. 10 is not equivalent toUT U = I. Constraints
onU apply to its segments (i.e.̂X, Ŷ , Ẑ) respectively.

5 Partitioning Temporal Graphs
The problem of community discovery has been formu-

lated as a graph partitioning issue. Next we present a con-
strained graph partitioning method that threads community
discovery across consecutive time periods.

5.1 Graphs with consistent vertices

We first focus on the case where graphs have consistent
vertices. For each time period, we haveMt andUt as de-
scribed in Eq. 11 and Eq. 8 - Eq. 10, wheret = 1, ..., T are
the time stamps andU t contains the community member-
ship of authors, words, and venues. Assume that the graphs
have consistent vertices; thus, allUt have the same dimen-
sions. Now, let us define a cost function on the difference
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betweenU ti andU tj for an arbitrary time stamp pairti, tj ,
denotedc(U ti , U tj ). The discovery of community structure
at time t seeks to minimize the weighted sum of the dis-
tances between the current and previous community mem-
bership back tot − δ:

min
Ut

t−1∑

π=t−δ

απc(Uπ, U t) (15)

whereαπ is the weight on the distance to the community
membership atπ time periods ago. The weights on different
historic periods are prescribed parameters. Hereafter, for
simplicity, we concern ourselves only with the first-order
dependency case whereδ = 1 andαπ = 1.

A key issue is the design of the cost functionc(U̇ , U).
Here we let the cost function be the negative cosine dis-
tance between two subspaces. SupposeẊ , Ẏ , andŻ are the
reference subspaces ofX , Y , Z. We know that‖Ẋ‖2 =
‖Ẏ ‖2 = ‖Ż‖2 = 1. Thus, the square of cosine distances
between the desired subspace and the reference subspace
are respectively‖ẊT X̂‖2, ‖Ẏ T Ŷ ‖2, and‖ŻT Ẑ‖2. In ad-
dition, we know that the cosine distances are within[0, 1].
We thus seek to maximize the cosine distances to minimize
the cost imposed by the distance from the reference sub-
spaces. In particular, define the cost functionc(U̇ , U):

−c(U̇ , U) = α‖ẊT
X̂‖2 + β‖Ẏ T

Ŷ ‖2 + γ‖ŻT
Ẑ‖2 (16)

= α.tr(X̂T
ẊẊ

T
X̂) + β.tr(Ŷ T

Ẏ Ẏ
T
Ŷ ) + γ.tr(ẐT

ŻŻ
T
Ẑ) (17)

= tr(UT
U̇U̇

T
U), (18)

whereU̇ = [
√

αẊT ,
√

βẎ T ,
√

γŻT ]T , α, β andγ are the
weight parameters of the membership differences in au-
thors, words, and venues. Here, notice thatU̇ U̇T is es-
sentially the covariance matrix between the vertices in the
reference time period. Since we have assumed consistent
vertices in the graphs across different time periods, we es-
sentially minimize the the conflicts between the discovered
U and the referenced covariance.

5.2 Graphs with evolving vertices

Now we generalize the previous section to graphs with
evolving vertices. In practice, some vertices may disappear
and other new ones may show up, thus theU̇ obtained from
previous period can disagree with the dimensionality of the
U in the current time period. We introduce an additional
step to adapṫU to address this issue.

First, some vertices from previous time period may dis-
appear. Since each vertex corresponds to a row inU̇ , we
can delete these rows froṁU , forming a matrix with same
number of columns but a smaller number of rows,U̇ ′. We
call the first step shrink(). Thus we have:

U̇ ′ = shrink(U̇) = [Ẋ ′T , Ẏ ′T , Ż ′T ]T (19)

whereU̇ ′ is the adapted subspace with disappeared vertices
removed.Ẋ ′, Ẏ ′, andŻ ′ still correspond to the remaining

Ẋ, Ẏ , andŻ. Second, some new vertices may appear in the
current time period. In this case, we have no prior knowl-
edge about their membership. Therefore, we require zero
co-variances of them with others, corresponding to zeros in
the corresponding rows. Name this second step expand():

U̇ ′′ = expand(U̇ ′) = [Ẋ ′T , 0, Ẏ ′T , 0, Ż ′T , 0]T , (20)

where[Ẋ ′T , 0]T , [Ẏ ′T , 0]T , and[Ż ′T , 0]T respectively cor-
respond to the newly observedXt, Y t, andY t; all 0′s has
the appropriate number of rows andk columns. We then
arrive at the new reference covariance matrixc(U̇ , U) as:

Ċ = U̇ ′′U̇ ′′T , (21)

which leads to the new cost functionc(U̇ , U) onU and ref-
erenceU̇ defined as:−c(U̇ , U) == tr(UT ĊU), whereĊ
is given in Eq. 19 - Eq. 21.

Note the handling of new vertices here. Since the refer-
enceU̇ ′′ still has values in the rows corresponding to the old
vertices, these previously observed vertices will be made
consistent with the previous period. On the other hand, the
new vertices will not be affected by such prior knowledge of
the previous time period because of the zeros in the rest of
U̇ ′′. To see this, note that the tr(UT ĊU) has zero diagonals
in the indices of those newly observed vertices regardless of
the values ofU in the corresponding rows.

Given the above, the combined community discovery
problem at each time period is written as:

min
U

J̃ = min
U

J3 + c(U̇ , U)

≡ max
U

tr(UT MU) + tr(UT ĊU)

= max
U

tr(UT (M + Ċ)U) (22)

subject to

U = [X̂T , Ŷ T , ẐT ]T (23)

X̂, Ŷ , Ẑ satisfy Eq. 8 - Eq. 10 (24)

M is given in Eq. 11 (25)

U̇ = [
√

αẊT ,
√

βẎ T ,
√

γŻT ]T (26)

Ċ is given by Eq. 19 - Eq. 21. (27)

whereα, β andγ are the weight parameters for the mem-
bership differences in authors, words, and venues;U̇ is the
reference membership matrix. We arrive at a quadratically
constrained quadratic programming problem.

6 Efficient Approximate Solutions

This section gives an efficient algorithm to solve the
problem formulated in Eq. 22 - Eq. 27. It can be seen that
Eq. 22 has a quadratic cost function of the matrixU . Here
Eq. 22 can be rewritten as:
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max
U

∑

i

UT
i (M + Ċ)Ui) (28)

where theUi’s are column vectors inU . We can see that this
is a sum of a sequence of quadratic functions each corre-
sponding to a subset of constraints in Eq. 23 - Eq. 27. Thus
we have a sequence of quadratically constrained quadratic
programming (QCQP) sub-problems. Note these QCQP
problems are not isolated because their solution vectorsUi

are required to be orthogonal.
For each QCQP sub-problem alone, there exists a stan-

dard solution using semidefinite programming (SDP) [2].
For example, a related work [8] studied the binary clus-
tering case and proposed an approximate solution using an
interior-point method. However, we note that our optimizer
here is a matrix (U = [XT , Y T , ZT ]T ) instead of a single
vector. Thus, to apply SDP on each column vector and com-
bine them together is overly complex. Nevertheless, one
might construct a very high-dimensional vector by columns
of U and still translate the problem into SDP, but difficulty
still arises from the exploding dimensionality of the prob-
lem. Recall thatU ∈ R

(nX+nY +nZ)×k, wherenX , nY ,
andnZ are the numbers of authors, words, and venues. The
translated SDP problem will have ak(nX + nY + nZ)-
dimensional vector as the minimizer (with ak(nX + nY +
nZ)×k(nX +nY +nZ) semidefinite matrix of constraints),
which can easily surpass the capacity of most SDP solvers.

Instead, we propose an efficient algorithm that searches
for approximate solutions. The new algorithm is based on
algorithms for eigenvectors. First we are aware that the
Eq. 22, without constraints, reaches the maximum when
U contains the firstk eigenvectors of the symmetric ma-
trix A = M − U̇U̇T . This is a standard result from ma-
trix theory [9]. In addition, we have∀U ∈ {U |UT U =
I}, UT AU ≤ λ1 + ... + λk, whereλ1, ...λk are the
first k largest eigenvalues ofA. Second, we seek to pre-
serve the constraints as much as possible while maximizing
J̃ . We modify theorthogonal iterationmethod which is
used to calculate the eigenvector space without constraints.
The idea is to incorporate the constraints into the classical
method. The new algorithm,fractional orthogonal itera-
tion, is presented below:

Here eig(A, k) calculates thek-dimensional eigenvector
space ofA without constraints. This is the initial value for
the subsequent orthogonal iteration. In the algorithm, step 9
- step 11 produce the normalized̂X , Ŷ andẐ as specified
in the constraints. Step 8 performs the power iteration as
in the originalorthogonal iterationmethod for calculating
eigenvectors. Up to step 15, the algorithm has projected
the original bipartite graph couple into an approximatek-
dimensional eigenspace. The distribution of the points in
the new space preserves the distribution of objects at the
current time period, in addition to imposing the community
membership from the last period. Then we runk-means to
cluster the heterogeneous objects as current communities.

Algorithm 1 fractional orthogonal iteration
1: U̇ = [

√
αẊT ,

√
βẎ T ,

√
γŻT ]T ;

2: U̇ ′ ← shrink(U̇) as in Eq. 19
3: U̇ ′′ ← expend(U̇ ′) as in Eq. 20

4: Ċ ← U̇ ′′U̇ ′′
T

5: A = M + Ċ
6: [U, D]← eig(A, k)
7: for i = 1, 2, 3, ... do

8:




X̂

Ŷ

Ẑ



 ← A× U

9: QXRX ← X̂ // QR factorization
10: QY RY ← Ŷ // QR factorization
11: QZRZ ← Ẑ // QR factorization

12: U ←




QX

QY

QZ





13: end for
14: U ←M × U
15: run k-means onU to obtain the desired partitioning, where each row inU de-

notes the original data object of the same index.

7 Experiments
A synthetic data generator was created to test the pro-

posed method in various conditions, including different
edge density-to-noise ratio, various proportions ofX/Y/Z,
different settings ofλ, and different numbers of clusters (k).
Two connected graphsGXY and GY Z are generated for
the prescribedK and sizes ofX , Y , andZ. All clusters
contain the same number of entities with specified propor-
tions of X, Y, andZ. The densities of all the clusters are
the same, but the edge weights vary randomly. Random
noise is added to the graph and density is determined by the
given noise-signal ratio parameter (nsr). Settingnsr = 1
yields a random graph without cluster structures. Presum-
ably, the community structures in the graphXY diminish
as the noise-signal ratio (nsr) grows. Lownsr indicates
that graph partitioning will be easier. Table?? includes a
complete list of parameters and their meanings.

abbr. usages
fsi fractional subspace iteration
par partitioning static graphs usingfsi

t-par partitioning temporal graphs usingfsi
k number of clusters

density the edge density of the graph clusters
nsr noise-signal ratio, noise density / cluster density
x/z the size of X / the size of Z
λ the weight parameter in Eq. 11

7.1 Precision w.r.t. graph conditions

First, we focus on the clustering precision w.r.t. different
densities andnsr for k = 2. As illustrated in Fig. 4 we
present four values ofnsr, indicating increasing difficulty
for partitioning. In general, we observe that the precision
decreases asnsr grows. In each subfigure, we can see that
the clustering precision grows quickly as the graph clusters
become denser. On graphs with less noise, the precision
grows faster than on the highly noisy graphs. Compara-
tively, the proposedfsi algorithm outperforms the tradi-
tional subspace iterationalgorithm (without consideration
of constraints) for differentnsr. We are able to see that
the special scaling introduced infsi improves thesubspace
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iteration. Thefsi usually outperformssubspace iteration
by a greater amount in the more difficult situations (large
nsr). All precisions are measured usingk-means with ran-
dom initial medians. For each case, thek-means is repeated
for 10 times and the averages are presented.

Second, we performfsi on different settings ofx/z ra-
tios for a fixed setting ofλ. In real world datasets, the sizes
X andZ are usually not balanced. We comparefsi with
subspace iterationfor imbalanced data againstfsi by vary-
ing thex/z ratio. Fig. 5 shows different settings ofx/z for
different densities. Recall that a largex/z indicates that the
size ofX is much greater than that ofZ. Without loss of
generality, we assumex/z ≥ 1. We can see that for sparse
graphs (small density) thefsi outperformssubspace itera-
tion greatly (illustrated in the subfigure on the bottom). In
simple cases (large density), thefsi generally outperforms
subspace iterationfor small x/z; however,fsi underper-
forms subspace iterationslightly for small x/z on dense
graphs. Note that real-world graphs are usually very sparse;
thus,fsi could be favored on many real-world datasets.

7.2 Precision w.r.t. parameter settings

Here we test different settings of parameters and their
impact on community discovery precision. A set of experi-
ments were run with different settings ofλ in differentx/z
ratios. The results illustrated in Fig. 6 show that the favor-
ableλ are different whenx/z varies. When theX outnum-
bersZ by a large margin, a greater value inλ is favored;
similarly, smallλ performs better when there are fewX en-
tities compared withZ. This suggests that graphs with more
edges deserve a larger weight in the cost evaluation.

In order to better visualize the effect ofλ with different
x/z, we present the subspace scatter plots for differentλ.
Note that here|X |/|Y |/|Z| = 50 : 200 : 5. TheX out-
numberZ, indicated by a greatx/z ratio. In Fig. 3, we
show precisions forλ = 0.5, 0.8. Herek = 2 so we have
2-D subspaces. In this case, a largeλ better scales the edges
in Y Z and thus better embedsZ into the subspace.
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Figure 3. Subspace plots for different λ when
|X |/|Y |/|Z| = 50:200:5. Different clusters are
colored differently. Entities of different types
have different markers (circles, dots, stars for
X , Y , Z). Here k = 2.

Finally, we comparefsi with subspace iterationon dif-
ferent numbers of clusters, at differentsubspace iteration.
We can see that, for large density,fsi still outperformssub-
space iterationfor large numbers of clusters. However, the
subspace iterationseems to work better thanfsi for the
case of many clusters on sparse graphs. In practice, we
can substitutefsi by recursively performingk-means us-
ing k = 2 for bi-partitioning the graph, similar to [21].

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
0.8

0.9

1

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
0.8

0.9

1

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
0.6

0.8

1

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
0.8

0.9

1

Precision w.r.t. graph edge densities

ns
r=

0.
4

ns
r=

0.
3

ns
r=

0.
2

ns
r=

0.
1

Figure 4. The clustering precision w.r.t. edge
densities at different levels of noise-signal ra-
tio (nsr). The line with square markers is the
result for fsi. Here k = 2.
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nsr = 0.1, k = 2, λ = 0.5. The lines with
square markers are fsi.

7.3 Higher precision using prior knowl-
edge

The fsi algorithm uses the discovery results from the
previous time period as prior knowledge for analyzing tem-
poral graphs. This knowledge is then used as an addi-
tional constraint while discovering communities in the cur-
rent time period. We simulate a 2-period temporal graph
where communities in the first time period are clearly de-
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line with square markers is the result for fsi.

fined and then the community structure becomes vague in
the second time period. The community membership from
the first time period is used as the prior knowledge in the
second time period.

methods precisions methods precisions
par ong1 0.9193 par ong12 0.8212
par ong2 0.2123 t-par ong12 0.9169

average of the above 0.5658

Table 1. Different methods on temoral graphs.

In Table 1, we illustrate the precisions of clustering on
the snapshots from each time period and the average preci-
sion. It can be seen that the static partitioning precision is
very high ong1 (0.9193) and very low ong2 (0.2123): the
average of the two is about0.5658. In addition, we perform
clustering on the graph over the complete time periods, ob-
taining a precision of0.8212. Then we perform the con-
strained partitioning t-par on the temporal graph, yielding
the precision0.9169. The precision is much higher than per-
forming clustering periodically or on the complete graph.

A natural question is whether the community structure
from previous time periods isalwaysmore reliable and in-
formative than the current period. We would like to first
point out that the reference community membership does
not only encode the information from the immediate previ-
ous period but a combination of information from all previ-
ous periods. This is due to the recursive application offsi
on the snapshot sequence. Therefore, one might assume that
the community discovered based on all historical data can
be more reliable compared with the discovery on the cur-
rent single snapshot. In practice, we can also allow manual
manipulation of entity membership to be input as the prior
knowledge for thefirst time period, in order to increase the
validity of this assumption.
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Figure 7. The precision w.r.t. k, at differ-
ent densities: density = 0.05, density = 0.25,
density = 0.45. The line with square markers
is the result for fsi.
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Figure 8. Amount of publications and com-
munity size over time. Two different grouping
methods are shown, one by uniform group-
ing of years and the other by proportional
grouping.

7.4 Real-world dataset and experiments

A real-world data set for further experimentation was
generated by sampling documents from CiteSeer using
combined document metadata from CiteSeer, the ACM
Guide (http://portal.acm.org/guide.cfm), and the DBLP
(http://www.informatik.uni-trier.de/ ley/db) for enhanced
data accuracy and coverage. A set of venues was cho-
sen from five fields in computer science (software engi-
neering, data mining, artificial intelligence, databases,and
distributed computing), such that data from each field in-
cluded at least 2000 distinct author names and at least ten
years of significant coverage. All documents contained in
CiteSeer from each venue were obtained and the top 100
keyphrases were extracted from each document using the
KEA keyphrase extraction algorithm [7]. The KEA al-
gorithm was trained on the CSTR corpus provided with
KEA containing 320 manually labeled abstracts from the
computer science domain, and keyphrases were allowed to
range from one to three words in length. Author names were

8



normalized such that only the initials of the first and mid-
dle names were kept along with the full last name. The
correlated bipartite graphs were then generated for each
year of data by linking authors with specific keyphrases and
keyphrases with the venues in which they appeared. The fi-
nal dataset contained 12,677 authors and 45,295 keyphrases
from 30 distinct venues ranging over the years 1969 to 2004.
The total number of documents used was 13,310.

Experiments on this data set began by empirically deter-
mining the appropriate number of clusters. While it is an
open problem to determine the dimension of a subspace for
embedding a graph, we used simple heuristics. We ran the
proposed community discovery algorithm (fsi) with differ-
entk and chose thek corresponding to the smallest̃J (or
the greatestγ = tr(UT (M + Ċ)U)) as in Eq. 22. We ob-
served that theγ initially grows dramatically ask increases,
but grows at a much lower rate ask becomes large. Thus we
chose the smallestk that gave the near maximumγ. This
gave usk = 4.

Then we ran the temporal community discovery (t-par)
algorithm withk = 4 with various settings ofλ. For screen-
ing the results, we judge the quality of discovery by examin-
ing the grouping of venues since their number is small. We
observed that the quality is better for greaterλ, supporting
the results from synthetic datasets that suggestλ should be
set proportionally to|X |/|Z|. Here we setλ = 0.6.

We observe that the resulting communities of authors,
venues, and words are well grouped. Four communities are
discovered forartificial intelligence and machine learning,
database and data mining, parallel and distributed comput-
ing, andsoftware engineering. We present two discovered
communities and their authors in Table 2 and Table 3. In
our experiments, we used the discovered venue set to man-
ually produce community labels. The keyphrases (ranked
by frequency) were considered as the summarization of a
community.

Table 2 includes a subset of authors discovered in thear-
tificial intelligence and machine learningcommunity over
six time periods. For presentation, we rank the authors by
their number of papers within the corresponding periods.
We can observe that the community memberships of au-
thors are relatively stable but change over time. In the ex-
periments, we observed that the top authors remained as the
“core” members of the corresponding community and there
were many more authors who had joined and left from the
communities during these six time periods. The leftmost
column shows the top venues. Similarly, authors from the
database and data miningcommunity are presented in Ta-
ble 3.

We used the discovered clusters of words as the descrp-
tion for the corresponding communities. Summarizations
of two communities are presented in Table 4 and Table 5.
Words are ranked by their frequency of occurrence within
the data. Those words that did not occur in the previous pe-
riod are highlighted. Over the six time periods, we can see

the emergence of new words, which presumably indicate
the evolution of interests of the community.

Finally, we show the changes in communities’ sizes over
time in Fig. 8(b). The size of a community is measured by
the number of distinct authors discovered within a particular
time period. The sizes of the four communities are scaled
to sum up to one.

8 Conclusion
This paper addresses an emerging problem of temporal

community discovery from communication documents, by
which one can observe the temporal trends in community
membership over time. The problem is formulated as a
tripartite graph partitioning problem with prior knowledge
available of entity covariances. Temporal communities are
discovered by threading the partitioning of graphs in dif-
ferent time periods, using a new constrained partitioning
algorithm. Evaluation of the new algorithm is carried out
on several synthetic datasets and a real-world dataset pre-
pared from CiteSeer. Experiments on synthetic data reveal
the properties of the new algorithm in various graph condi-
tions. Experiments on CiteSeer data show the effectiveness
of the proposed approach in author community discovery
and community summarization. Future work will seek to
track the community membership of individuals over time
and investigate the applicability of the proposed methods to
different domains such as viral marketing or recommenda-
tion services. Additionally, topical trends over time willbe
further investigated to track changing interests and events
within communities.
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Table 2. Machine learning community during 1969-2004 in a CiteSeer sample.

Venues 1969-94 1994-96 1996-98 1998-2000 2000-02 2002-04
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A Gupta J Y Halpern Z M Zsoyoglu C Papadimitriou H Garcia-molina T Milo

Garciacute Garciacute H Garcia-molina H Garcia-molina J Widom P G Kolaitis
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Table 3. Database community during 1969-2004 in a CiteSeer sample.

years words

1994-96
learning model training probability value image set actioninput points output variables goal point values search policy
agent function selection examples error units distance knowledge classification representation recognition region test

1996-98
learningstatemodel image value training probabilitynetwork set values variablesclasserror points input point action
vector representationsequenceagent searchdistribution recognition unitsrandom output classification case robot

1998-00
learning model state value training set image probability values action points policy error search point sequenceactions
noise function knowledge distribution classification robot parameters estimatetext optimal estimation accuracy representation
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learning model training set error image probabilitymatrix point sequence distributionkernel classificationrandom features state
estimation function representationinput accuracystrategy vector text prediction parameters boundapproach selection

2002-04
learning model set probabilitypolicy points training sequence imagevariables optimalalgorithm function matrixsearch
point errordistance erentrandom bound classification maxrobot estimate representation caseexpecteddistribution vector

Table 4. Frequent words in the machine learning community during 1994-2004 in a CiteSeer sample.

years words

1994-96
query data database queries object path event cost type userexecution objects table class transaction local rules server client
join name formula update rule attribute attributes view pages plan read
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query data queries database object costtree information view user attributes pages objects rules join plan table update
transaction type attributeconstraints page access server diskrequests real-time labelclient
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query data queries user information database pages rules constraints planpath attributes attribute view join formula table
sources update objectsrequeststrategydocuments level instance itemsrule webspatialapplication

2000-02
data query queriespoints information pathcostxml database attributesvaluespagestree constraints table join plan
type objects pagedistance management example documentattribute update labeled items documents web

2002-04
data querynodequeries xml path values tree database attributes table document join name planservice cache
objectsreturn selectionconstraints typepatterns label mapping attribute tuples index itemsroot

Table 5. Most frequent words in the database community during 1994-2004 in a CiteSeer sample.
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