
Knowledge Discovery in Web-Directories: Finding
Term-Relations to Build a Business Ontology

Sandip Debnath1, Tracy Mullen3, Arun Upneja2, and C. Lee Giles1,3

1 Department of Computer Sciences and Engineering
2 School of Hotel, Restaurant and Recreation Management

3 School of Information Sciences and Technology,
The Pennsylvania State University, University Park, PA 16802 USA

debnath@cse.psu.edu, tmullen@ist.psu.edu, aupneja@psu.edu,
giles@ist.psu.edu

Abstract. The Web continues to grow at a tremendous rate. Search engines find
it increasingly difficult to provide useful results. To manage this explosively large
number of Web documents, automatic clustering of documents and organising
them into domain dependent directories became very popular. In most cases, these
directories represent a hierarchical structure of categories and sub-categories for
domains and sub-domains. To fill up these directories with instances, individual
documents are automatically analysed and placed into them according to their
relevance. Though individual documents in these collections may not be ranked
efficiently, combinedly they provide an excellent knowledge source for facilitat-
ing ontology construction in that domain. In (mainly automatic) ontology con-
struction steps, we need to find and use relevant knowledge for a particular sub-
ject or term. News documents provide excellent relevant and up-to-date knowl-
edge source. In this paper, we focus our attention in building business ontologies.
To do that we use news documents from business domains to get an up-to-date
knowledge about a particular company. To extract this knowledge in the form of
important “terms” related to the company, we apply a novel method to find “re-
lated terms” given the company name. We show by examples that our technique
can be successfully used to find “related terms” in similar cases.

1 Introduction

With the number of documents on the Web in trillions, less time to search for the
right document, and inefficiencies or limitations of search engine technologies, Web-
directories are an important way of organising Web documents. Examples include Ya-
hoo directories, Google directories or DMOZ directories, MSN directories and other
similar (mostly) hierarchical clusters or taxonomies of documents on the Web. Web-
directories are nowadays becoming more valuable for several reasons. First of all,
novice or first-time users sometimes may not necessarily know what keyword to search
with to get documents in certain area of interest. Lack of proper keyword in certain
specific domain can hinder the possibility of getting valuable documents. Secondly for
even expert users, it is always helpful to filter valuable documents and arrange them in
some fashion to save their time. These taxonomies help the users by filtering valuable
documents and arranging them in some fashion to save their time.

K. Bauknecht et al. (Eds.): EC-Web 2005, LNCS 3590, pp. 188–197, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Knowledge Discovery in Web-Directories 189

Learning term-relationships is considered one of the most useful steps in the con-
text of knowledge discovery, construction of knowledge-bases (e.g. domain ontologies)
or knowledge management issues. Our main goal is to build business ontologies for
major public companies listed in Forbes list. These ontologies will be part of our busi-
ness knowledge-base, which will be used for analysing textual information (such as
corporate news sources, whitepapers or annual reports etc.) for individual companies.

To construct these ontologies for individual companies, we needed up-to-date in-
formation, in the form of useful terms e.g. from news articles available in business
Web-sites. We can learn useful terms from these sources, which in the later stages, can
be incorporated into the ontology with human assistance. We use OWL-Lite for cre-
ating the ontology. Although this part is relevant, however in this paper, due to space
constraints, we mainly focus on the pre-processing of documents so that we can have
all related terms for a company (in this case) extracted from the corresponding news
document set.

Though we do not have enough space for the details of the ontology construction
process here (we give a block-diagram in Figure 1), however, in this paper, we present
the learning model (shown as a dotted rectangle surrounding “Related Term-vector Gen-
erator”) involved in this work. The model is used to retrieve important terms to be in-
cluded in the ontology.

Our approach of finding useful terms borrows ideas from query expansion or query
term re-weighting. We basically are looking for “related term-vector” (defined later)
for a particular company. This is an on-line learning process, where we do not rely on
dictionary, thesaurus, or word-net to generate the ”related term-vector”, which can be
thought of as query-expansion. We use news articles to learn the term co-occurrences
for the companies and we used company names as query terms. This knowledge is used
to build the ”related term-vector” and the corresponding ontology. As new news articles
are introduced we do the analysis on-the-fly to update the ontology.

2 Related Work

Building ontology is a complex process. Though large-scale ontologies exist, they may
not be appropriate for specific purpose. According to Noy [17], ontologies should be
built for specific purpose or reason. To elaborate on that she advised ontology-builders
to follow yet we need to build ontology for a particular domain, such as business do-
main. Moreover we need to keep it relevant and up-to-date. Building ontologies com-
pletely manually is time-consuming, and erroneous. It is also difficult to modify ontolo-
gies manually. Automatic ontology building is a hard problem.

Ontology building process can be top-down, bottom-up or middle-out. Uschold
et.al. proposed a manual ontology building process, parts of which can be made auto-
matic. According to them the manual process consist of (1) identifying the key concepts
and relationships between them, (2) committing to the basic terms such as class, entity,
relation etc., (3) choosing a representation language, (4) integrating existing ontologies.
Our method of discovering the knowledge by way of finding related terms for a com-
pany name falls under the first step. Though discovering relationships between terms is
a whole different subject of research and out of scope for a discussion here, we mainly

190 S. Debnath et al.

focus here on the prelude, which is finding the related terms. We believe that automat-
ing each individual sub-process of the ontology building process is the only way to
automatise it as a whole.

Learning term-term relationships has its root in Information Retrieval (IR) research
in the context of relevance feedback and is used mainly for query modification. The two
main trends in this research is query term re-weighting and query expansion.

Harman [8,9,11,10] examined these two trends in a probabilistic model. There
he discussed the question of adding best possible terms [8] with the query. Term re-
weighting is an essential part of relevance feedback process, which has been investi-
gated by Salton et. al. [23,12] in addition to their experiments with variations of prob-
abilistic and vector space model [22]. Smeaton and van Rijsbergen [25] investigated
query expansion and term re-weighting using term-relationships. The results from these
experiments are largely negative. Query expansion via Maximum Spanning Tree shows
poor performance for unexpected query. The same happened using Nearest Neighbour
approach too. They cited the reason behind this as the difficulty in estimating the proba-
bility. We introduced a simple way of estimating the probability for a set of documents.
Two words are associated if they co-occur in a sentence or nearby-sentences. In our
belief, this is more realistic and reasonable approach and this can be viewed as learning
the relationships from a set of documents.

User specific information has been used to expand the query [1]. Personal con-
struct theory has been used in this [13] paper. We analyse the document set to find out
the probability of co-occurrence and use that instead of user-preference. A user-centric
evaluation of ranking algorithms can be found in [5]. In [15] Ramesh worked with Sen-
Tree model to find term-dependencies. In [21] researchers used a logical approach to
describe the relationship between a term and a document. They used a probabilistic
argumentation system and claimed after Rijsbergen that IR systems are a form of un-
certain inference. In order to be relevant to a term, a document must imply the term.
Our approach can be seen from this angle, that each term must imply the occurrence of
the related term with a certain probability. Our idea of term-relationship is somewhat
similar to term co-occurrence [19]. In that work Peat and Willett explained the limita-
tions of using term co-occurrence. But they used a more generic calculation of similar
terms by three similarity measures, cosine, dice, and tanimoto. They used the whole
document to find the term co-occurrence instead of a small region. We believe that the
way the similarity measures are formed and the way term co-occurrences are identified
are too generic in nature to find any useful result. Instead of completely relying on the
document statistics, if we can exploit the usual constructs of natural language sentence
formation and use a smaller region of terms rather than the whole document, we can
achieve better result.

Other researchers such as Turtle and Croft [26], Fung et. al. [6], Haines and Croft [7],
Neto [16], Pearl [18] and Silva [24] also contributed in this area of research. Some of
the researchers viewed the document as a sample of the collection of terms. Terms oc-
cur randomly in the document with some probability distribution and these distributions
are not always known. Even if we do not know the real distribution, document-term-
relationship or term-term relationship can play a major role.

Knowledge Discovery in Web-Directories 191

3 Our Approach
We introduce a new way to look into term co-occurrences. Natural language documents
are not just arbitrary array of words. Words co-occurring in sentences or nearby sen-
tences, relate to each other more closely that in two distant sentences. As described
above, the reason behind the failure of term co-occurrences as studied in [19] can pos-
sibly be improved. We introduce “Weighted-Sentence” (WS) based term co-occurrence.

The system architecture is shown in Figure 1 for a category. The document col-
lection is pre-filtered but not ranked. In taxonomies or Web-directories, candidate doc-
uments for a category are already organised using shallow filtering techniques, as ex-
plained above. This means that we have got the preliminary document set for a company
or category. We use this document set to generate the related-term vectors for the query
(category/company name).

For the rest of the discussion, it will be easier to think of the company or category
name as the keyword in question. Actually, not only just for the sake of discussion, but
sometimes documents are clustered in the same way in reality too. For example we will
see that in financial news domain of Yahoo 1, news articles are filtered according to the
occurrence of the ticker symbol in those articles. Even if it is not the case, for the sake
of generality we can assume that the set of documents are pre-filtered for the keyword
in question.

...

Company Name

Related
Term−vector
Generator

News Filter

News Collection

MSFT 1
MSFT 2

MSFT M

...

Bayes−Net

Generator

Bayesian
Network

OWL Ontology
Schema DTD

Human Agent

Refinement
Modules

Ontology

Ontology Construction

Other
Sources

of
MSFT

(MSFT)

Modules
Learning

Visualization
Module

Other
Steps

(Not
shown
due to
space
constr−
aints)

Protege
Ontology Building Tools

Rule
Based

SVM
Based

...

Grammar
Based

Extraction
 Modules

Company Name (Microsoft)
Company Ticker Symbol

(MSFT)

Learning Module

Fig. 1. The architecture of our system describing the ontology building process. We collect up-to-
date and useful information from several different sources including financial news documents.
News filter filters news for a specific company (e.g. MSFT or Microsoft). We describe the theory
behind the “Related Term-vector Generator” in this paper.

Let us assume that in a category C there are in total M documents D1, D2, . . . , DM

pre-filtered for the query w. This constitutes the document collection C. So

C = {D1, D2, . . . DM} (1)

Each of these documents can be thought of as a set of sentences. Therefore, if document
Dd has Nd number of sentences in it, then we can write

Dd = {Sd
1, S

d
2, . . . S

d
Nd

} where Sd
j : jth sentence in document Dd (2)

1 http://finance.yahoo.com

192 S. Debnath et al.

Similarly we can also imagine each individual sentences as a set of words and extend
the same notation. Hereafter we removed the superscript of Si to reduce the notational
clumsiness. So if Si contains Pi number of words in it then

Si = {wi
1, w

i
2, . . . w

i
Pi} where wi

k represents the kth word in sentence Si (3)

3.1 Related-Term Vector

Related-term vector of a query w is a vector of all the words which co-occur with w
and are important (ranked higher than a given threshold). Basically it is the set of
terms for which the term co-occurrence measure between them and the query is higher
than a threshold. The difference between conventional co-occurring terms [19] and our
approach is that we consider words in the same sentence or neighbouring sentences
(will be explained in section 4.1) as probable candidates for related-term vector. We
will come to the implementation part of it, (where this concept will be made clearer)
where we took another assumption that no “verb”, “preposition” or so-called stop-words
are included in the related word-set. So according to this definition, if a sentence does
not contain the query keyword w, then the related word-set of w for that sentence is a
null-vector.

At this point, we assume that we have a function Ψ which generates all the related-
terms of w when it is applied to a sentence Sj containing w. Therefore,

−→
Ψ (w, Si) =

{
〈−−−−−−−−−−−−−−−−→wr

1, w
r
2, w

r
3, . . . w

r
ri〉, wRwr

j and w ∈ Si−→
φ , otherwise

(4)

Ψ generates a vector of related-terms of the query w. Considering the fact that func-
tion Ψ generates a vector, we can write Ψ(w, Si) as

−→
Ψ (w, Si). R implies that w and

wr
j are related. ri is the total number of related words in this sentence Si.
An example would be useful here. In a sentence “Microsoft (MSFT) CEO Bill Gates

announced today about the upcoming version of windows operating system, codenamed
longhorn” , the words/phrases like “CEO”, “Bill Gates”, “today”, “upcoming”, “ver-
sion”, “windows”, “longhorn” etc. could be all related to the keyword “Microsoft”.
Given this sentence and the keyword “Microsoft”, the function Ψ will generate the
related-term vector which may include the above words depending on the threshold
used.

Similar to the above derivation (3) we can see that in case of a whole document Dj

and for the whole document collection C in category C,

−→
Ψ (w, Dj) =

Nj∑
k

−→
Ψ (w, Sk) and

−→
Ψ (w, G) =

M∑
j

−→
Ψ (w, Dj) (5)

where the summation indicates a vector addition.
We describe the algorithm to implement the Ψ function and the related-term vector

generating process in subsection 4.1.

Knowledge Discovery in Web-Directories 193

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50

Weig
ht an

d Ch
osen

 Sen
tence

s

Sentence Positions

Fig. 2. The weighting function W (j) and the set of sentences included in N(Si) as shown by
the bar graphs. Each bar indicates a sentence. The preliminary sentence set was 1, 10, 20, 23, 24,
31, 39, 40, 41, 46, and 50 and the final extended sentence set is 1-3, 10-12, 20-26, 31-33, 39-43,
46-48, and 50.

4 Theory and Implementation

Here we elaborate our theory behind related-term vector.

4.1 Weighted Sentence Based Related-Term Vector

We introduce a novel concept of finding related-term vectors based on weighted sen-
tences. On-line publishable natural language texts are almost always written in a coher-
ent way. That means once a topic is mentioned, a few consecutive sentences are devoted
to describe the topic. We exploit this this editing style to extract related-term vector by
using our weighted sentence (WS) based method.

As mentioned earlier, related-term vector basically depends on the concept of term
co-occurrences. From equation (4)

−→
Ψ (w, Si) =

{
〈−−−−−−−−−−−−−−−−→wr

1, w
r
2, w

r
3, . . . w

r
ri〉, wRwr

j and w ∈ N(Si)−→
φ , otherwise

(6)

Let us proceed step-by-step assembling all the concepts necessary to get the gener-
ating function for related-term vector. Let us first modify the concept of “sentences” to
an “extended sentence-set”. This will also help us define the weighted sentence (WS)
based method. We introduce a function N(Si) which takes the position of a sentence Si

and generates the extended sentence-set. First we define the following function to get
the weighting factor.

W (w, j) = e(j−i)log(τ) where w ∈ Si, j ≥ i, τ = threshold (7)

Here W (w, j) is a weighting factor for all consecutive sentences at position j after the
sentence i containing the query w. In our implementation, τ = 0.5. With this definition
we define N(Si) as

194 S. Debnath et al.

N(Si) = {Sk|k ≥ i, W (w, k) ≥ ε} (8)

In our implementation ε = 0.2. Figure 2 shows the W (w, j) for a sample document
where sentences at positions position 1, 10, 20, 23, 24, 31, 39, 40, 41, 46, and 50 contain
the query term. In this particular case sentences at positions 1-3, 10-12, 20-26, 31-33,
39-43, 46-48, and 50 will be included in corresponding N(Sj)s. This idea is the result of
an empirical study about the effect of sentences in document relevance and we showed
that this technique can be useful to increase document relevance.

The idea behind is that natural language sentences cluster together based on topic.
Term-significance is calculated using a formula similar to [20], where term-term sig-
nificance was calculated per document basis. We calculate it per collection-basis. The
significance of a word wm co-occurring with w in sentence Sj is

σwm =
ptfm√∑

r ptfr
2
× log Φ (9)

where ptfm = (tfm

maxrtfr
) and where Φ = N

nm
where

tfm = ntf j
m × W (w, j|Sj ∈ N(Si)) (from (8)) (10)

where ntf j
i = term-frequency of term wi in sentence Sj . N is the number of total

sentences in the document collection C which is (from (1) and (2))

N =
M∑
k

Nk (11)

nm =
M∑

Sk /∈N(Si),wm∈Nouns(Sk)

Nk (12)

which in simple term is the number of sentences outside the set N(Si) where the term
wm appears. Nouns(Sk) is an NLP function which gives the set of all nouns of a
sentence, taken as its input.

Now R represents the relatedness between two terms. It is a defined as a relation
between w and wm which produces the candidacy of wm to be included in the related-
term vector depending on some conditions.

R ≡ {f : w → wm|σwm > ζ, wm ∈ Nouns(N(Si))} (13)

Here Nouns(N(Si)) gives the whole set of nouns from the extended WS set of Si. ζ is
a threshold.

5 Evaluation

Experimenting and evaluating the processes responsible for automatic ontology con-
struction is a hard problem. First of all the process consists of several sub-process

Knowledge Discovery in Web-Directories 195

and each has separate goals. Secondly it is hard to quantify the betterness of an on-
tology over other ontologies. The reason lies in the basics of ontology construction.
As Noy [17] said, ontologies are build for specific purposes. Therefor our business
ontology for business document analysis can not be compared with another business
ontology, constructed for a different goal. For these reasons we decided to provide the
experimental results in the form of the related term-set generated by our technique. In
future we would like to concentrate on finding out the use of these terms in the context
of relevance or some other purpose and can compare the usefulness and betterness of
our approach over others.

Table 1. Details of the dataset. We have 112 companies/categories in total but due to the enormous
size of the latex table all of them are not shown. Number of pages taken from individual categories
are shown in the third column, followed by related-term sets as found by our method.

Symbol Company Number of
documents

Related terms

AAPL Apple 86 AAPL, Apple, Computer, Music, MSFT,
Lehman, Steve Jobs, Cowen, etc.

DELL Dell Inc. 169 DELL, Computer, www.dell.com, Michael
Dell, HP, Server, IBM, Storage,

EBAY eBay 108 EBAY, Paypal, Amazon, AspenTech, Andale,
Auction, Bid, etc.

GE General Electric 238 GE, Finance, General Electric,
Schwarzenegger, Capital, China, Aegon,
Medical, etc.

IBM IBM 387 IBM, Sco, Linux, Services, Unix, Lego,
Equifax, Lotus, eServer, HP, Tivoli, etc.

JNJ Johnson and Jonhson 74 JNJ, Johnson, Merrill, Centocor, Medtronic,
etc.

JPM JPMorgan Chase and
Co

88 JPM, JPMorgan, Chase, Risk, Equity,
Metropoulas, etc.

MSFT Microsoft 492 MSFT, Microsoft, Security, AOL, Apple, Sco,
Caldera, Macintosh, Wi-Fi, etc.

5.1 Data Set

We crawled Yahoo’s financial news page 2 starting from summer 2003 and cached in-
dividual news articles as appeared in Yahoo web-pages in respective company ticker
symbol. We selected 112 stock symbols for this experiment. We converted the HTML
pages into text using a combination of our own extraction algorithms ContentExtractor
and FeatureExtractor [4,3,2].

In short they are based on HTML features and information content blocks. We di-
vided the HTML pages into several different blocks, based table, page or other type of
boundaries. These blocks are then analysed for the required feature or based on their
similarity over a collection. We got over 95% of F-measure in this part. Due to space

2 http://finance.yahoo.com

196 S. Debnath et al.

constraints we are not showing the results here. The details of the dataset is shown in
Table 1 for 8 companies. Due to space constraints we could not show all 112 categories.
The total number of documents we analysed for this paper is 2333.

5.2 Experiment

We implemented our algorithms in Perl on Unix platform. We used Alembic work-
bench [14] (for the Noun function), which is one of the best natural language process-
ing softwares available. From the Table 1 we can see that our approach can be used to
extract very useful terms for all these companies.

6 Conclusion and Future Work

We came up with a novel technique of discovering knowledge from web-directories
by finding term-term relations in news article collections available from these web-
directories. From our approach and the formula used, we claim that our approach is
flexible and it can be applied to any document collection for any query term, if we just
replace the company names with the desired query term. In future we would like to
create a Bayesian Network from these term-relations which can play a major role in as-
sisting humans to populate the company ontology instances. The formation of Bayesian
Network and the proper use of it can also help us quantify the usefulness and to do per-
formance comparison of our approach over others in the context of document relevance.

References

1. Sanjiv K. Bhatia. Selection of search terms based on user profile. In Proceedings of the
ACM/SIGAPP Symposium on Applied computing, pages 224–233, 1992.

2. Sandip Debnath, Prasenjit Mitra, and C Lee Giles. Automatic extraction of informative
blocks from webpages. In Proceedings of the ACM SAC 2005, pages 1722–1726, 2005.

3. Sandip Debnath, Prasenjit Mitra, and C Lee Giles. Identifying content blocks from web
documents. In Proceedings of the 15th ISMIS 2005 Conference, pages 285–293, 2005.

4. Sandip Debnath, Prasenjit Mitra, Nirmal Pal, and C Lee Giles. Automatic identification of
informative sections from webpages. In Upcoming journal of IEEE Transactions on Knowl-
edge and Data Engineering, 2005.

5. Efthimis N. Efthimiadis. A user-centred evaluation of ranking algorithms for interactive
query expansion. In Proceedings of the 16th ACM SIGIR, pages 146–159, 1993.

6. Robert Fung and Brendan Del Favero. Applying bayesian networks to information retrieval.
In Communications of the ACM, volume 38(3), pages 42–ff, 1995.

7. David Haines and W. Bruce Croft. Relevance feedback and inference networks. In Proceed-
ings of the 16th ACM SIGIR, pages 2–11, 1993.

8. Donna Harman. Towards interactive query expansion. In Proceedings of the 11th ACM
SIGIR, pages 321–331, 1988.

9. Donna Harman. Ranking algorithms. In Information Retrieval: Data Structures and Algo-
rithms, pages 363–392. Englewood Cliffs: Prentice Hall, 1992.

10. Donna Harman. Relevance feedback and other query modification techniques. In Information
Retrieval: Data Structures and Algorithms, pages 241–263. Englewood Cliffs: Prentice Hall,
1992.

Knowledge Discovery in Web-Directories 197

11. Donna Harman. Relevance feedback revisited. In Proceedings of the 15th ACM SIGIR, pages
1–10, 1992.

12. Wu Harry and Gerard Salton. A comparison of search term weighting: term relevance vs.
inverse document frequency. In Proceedings of the 4th ACM SIGIR, pages 30–39, 1981.

13. George A. Kelly. A mathematical approach to psychology. In B. Maher, Ed. Clinical Psy-
chology and Personality: The Selected Papers of George Kelly, pages 94–112. John Wiley
and Sons, 1969.

14. MITRE. Alembic workbench - http://www.mitre.org/tech/alembic-workbench/.
15. R. Nallapati and J. Allan. Capturing term dependencies using a language model based in

sentence tree. In Proceedings of CIKM 2002, 2002.
16. Berthier Ribeiro Neto and Richard Muntz. A belief network model for ir. In Proceedings of

the 19th ACM SIGIR, pages 253–260, 1996.
17. N.F. Noy and C. Hafner. The state of the art in ontology design: A survey and comparative

review. In AI Magazine, volume 18, pages 53–74, 1997.
18. Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.

Morgan Kaufmann Publishers Inc., San Francisco, CA, 1988.
19. Helen J. Peat and Peter Willett. The limitations of term co-occurrence data for query ex-

pansion in document retrieval systems. In Journal of the American Society for Information
Science, volume 42(5), pages 378–383, 1991.

20. Ulrich Pfeifer, Norbert Fuhr, and Tung Huynh. Searching structured documents with the
enhanced retrieval functionality of freewais-sf and sfgate. In Computer Networks and ISDN
Systems, volume 27(6), pages 1027–1036, 1995.

21. Justin Picard and Rolf Haenni. Modeling information retrieval with probabilistic argumen-
tation systems. In 20th Annual BCS-IRSG Colloquium on IR, 1998.

22. Gerard Salton. Automatic Information Organization and Retrieval. McGraw-Hill, 1968.
23. Gerard Salton and C. Buckley. Improving retrieval performance by relevance feedback. In

Journal of the American Society for Information Science, volume 41, pages 288–297, 1990.
24. I. R. Silva. Bayesian networks for information retrieval systems. In PhD thesis, Universidad

Federal de Minas Gerais, 2000.
25. A. Smeaton and C. J. van Rijsbergen. The retrieval effects of query expansion on a feedback

document retrieval system. In Computer Journal, volume 26(3), pages 239–246, 1983.
26. H. Turtle and W. B. Croft. Inference networks for document retrieval. In Proceedings of the

13th ACM SIGIR, pages 1–24, 1990.

	Introduction
	Related Work
	Our Approach
	Related-Term Vector

	Theory and Implementation
	Weighted Sentence Based Related-Term Vector

	Evaluation
	Data Set
	Experiment

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

