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Despite its decentralized and unorganized nature, the Web self-organizes
to allow identification of highly related pages based solely on connectivity,
without the inherent bias of text-based approaches.

he vast improvement in information access
is not the only advantage resulting from
the increasing percentage of hyperlinked
human knowledge available on the Web.
Additionally, much potential exists for
analyzing interests and relationships within science
and society. However, the Web’s decentralized and
unorganized nature hampers content analysis. Mil-
lions of individuals operating independently and
having a variety of backgrounds, knowledge, goals,
and cultures author the information on the Web.
Despite the Web’s decentralized, unorganized, and
heterogeneous nature, our work shows that the Web
self-organizes and its link structure allows efficient
identification of communities. This self-organization
is significant because no central authority or process
governs the formation and structure of hyperlinks.

WEB COMMUNITIES

A Web community is a collection of Web pages in
which each member page has more hyperlinks
within the community than outside the community.
We can generalize this definition to identify com-
munities with varying sizes and levels of cohesive-
ness. Community membership is a function of both
a Web page’s outbound hyperlinks and all other
hyperlinks on the Web because the rest of the Web
collectively forms a page’s inbound hyperlinks.
Therefore, these communities are “natural” in that
independently authored pages collectively organize
them. The Web self-organizes such that these link-
based communities identify highly related pages.

Compared to previous methods of finding related
Web pages described in the “Finding Related Pages
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on the Web” sidebar, our approach retains the trans-
parency of methods such as cocitation and biblio-
graphic coupling in explaining why pages belong to
a community, yet it can identify Web communities
of arbitrary dimensions. Our algorithm achieves this
performance using only link information, without
the text information that algorithms such as
Hyperlink-Induced Topic Search (HITS) use.

In the absence of full natural-language process-
ing, a Web author’s creation of an explicit link can
be a stronger indication of relevance than the
implied links that simple textual phrase and struc-
ture matching generate. In addition, separating link
structure from content facilitates using content-
based similarity measures to independently validate
the performance of the link-based community esti-
mation process.

We can model the Web as a graph in which Web
pages are vertices and hyperlinks are edges. Identi-
fying a naturally formed community—according to
our definition—is generally intractable because the
basic task maps into a family of NP-complete graph
partitioning problems." However, if we assume the
existence of one or more seed Web sites—pages that
are positive examples of community members—and
exploit the Web graph’s systematic regularities,”* we
can recast the problem. This approach provides a
framework that permits efficient community identi-
fication via a polynomial time algorithm that should
scale well to studying the entire Web graph.

MAXIMUM FLOW COMMUNITIES

We can recast the problem into a maximum flow
framework to analyze the flow between graph ver-
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Finding Related Pages on the Weh

Previous link-based research for iden-
tifying collections of related pages in-
cludes bibliometric methods such as
cocitation and bibliographic coupling,’'
the PageRank algorithm,” the Hyperlink-
Induced Topic Search (HITS) algorithm,’
bipartite subgraph identification,* spread-
ing activation energy (SAE),’ and oth-
ers.®’

Localized approaches, such as cocita-
tion, bibliographic coupling, and bipar-
tite subgraph identification, seek to
identify well-defined graph structures that
exist inside a narrow region of the Web
graph. More global approaches, such as
PageRank, HITS, and SAE, work by iter-
atively propagating weights through a
significant portion of the Web graph. The
weights reflect an estimate of page impor-
tance (PageRank), how authoritative or
hublike a Web page is (HITS), or how
“close” a candidate page is to a starting
region (SAE). PageRank and HITS relate
to spectral graph partitioning® and there-
fore seek to find “eigen-Web-sites” of the
Web graph’s adjacency matrix or a sim-
ple transformation of it. Unlike SAE
results, which show extreme sensitivity to
the choice of parameters,” both HITS and
PageRank are relatively insensitive to
their choice of parameters.

Localized approaches are appealing
because the identified structures unam-

biguously possess the properties that the
algorithms seek by design. However,
these approaches fail to find large related
subsets of the Web graph because the
localized structures are simply too small.
At the other extreme, PageRank and
HITS can operate on large subsets of the
Web graph and can therefore identify
large collections of related or valuable
Web pages.

Because they are based on spectral
graph partitioning, these methods often
make it difficult to understand and defend
the inclusion of a given page in the col-
lections they produce. In practice, we can
achieve meaningful results with HITS and
PageRank only when we use textual con-
tent for either preprocessing (HITS) or
postprocessing (PageRank). Without aux-
iliary text information, both PageRank
and HITS have limited success in identi-
fying collections of related pages.’
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tices. If edges are water pipes and vertices are pipe
junctions, the maximum flow problem tells us how
much water we can move from one junction to
another.

Lester Ford and Delbert Fulkerson’s Max Flow-
Min Cut theorem® proves that the maximum flow
is identical to the minimum cut. Therefore, if you
know the maximum flow between two points, you
also know what edges you would have to remove
to completely disconnect the same two points—the
cut set.

Many polynomial time algorithms exist for solving
the s-# maximum flow problem.® These algorithms
formally define the problem with respect to a directed
graph G = (V, E), with edge capacities c(u, v) € Z*
and two vertices, s, t € V, so that the result is the max-

imum flow that can be routed from the source s to the
sink ¢ that obeys all capacity constraints.”

Figure 1 shows the basic intuition of our
approach. As formulated with standard flow ap-

Figure 1. A simple
community-identifi-
cation example.
Maximum flow
methods separate
the two subgraphs
with any choice of
source vertex s from
the left subgraph
and sink vertex t
from the right sub-
graph, removing the
three dashed links.
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Figure 2. Algorithms
for identifying Web
communities. (a)
The exact-flow-com-
munity algorithm
augments the Web
graph in three
steps. (b) The
approximate-flow-
community algo-
rithm uses a subset
of the Web graph
found by a fixed-
depth crawl that fol-
lows both inbound
and outhound hyper-
links.

procedure EXACT-FLOW-COMMUNITY
input: graph: G=(V, E);set: S < V;integer: k.
Create artificial vertices, sand £, and add to V.
forall ve Sdo
Add (s, v) to Ewith ¢ (s, V) = co.
end for
forall (v, v) e Edo
Setc(u, v)=k
if (v u) ¢ Ethenadd (v, u) to Ewith ¢ (v, u) = k.
end for
forallve V,vg Su{s, t}do
Add (v, t) to Ewith ¢ (v, t)=1.
end for
call : Max-FLow (G, s, t).
output : all ve Vstill connected to s.
end procedure

C))

proaches, all community members must have at
least 50 percent of their links inside the community.
However, maximum-flow methods use additional
artificial links to change the threshold from 50 per-
cent to any other desired threshold. Thus, we can
identify communities of various sizes and with vary-
ing levels of cohesiveness.

One or more seed sites can play the role of the
source vertex. For example, if the goal is to improve
categories in a Web directory, we would use the
existing pages in each category as seed sites. The
sum total of the edges connected to the seed sites
must be greater than the size of the cut set (the edges
whose removal separates the source and the sink),
represented by the dashed lines in Figure 1. If the
seed sites do not meet this constraint, the proce-
dure will only identify a subset of the community.
In the worst case, we will only identify the seed sites
as members of the community.

We could use an approximate centroid of the
Web graph, such as Yahoo, as the sink. However,
our method works without an explicit sink site via
the graph augmentation steps shown in Figure 2,
for which we have developed the corresponding
theorem and proof.®

AUGMENTING THE WEB GRAPH

The exact-flow-community procedure augments
the Web graph in three steps: It adds an artificial
source s with infinite-capacity edges routed to all
seed vertices in S, makes each preexisting edge bidi-
rectional and rescales it to a constant value k, and
routes all vertices except the source, sink, and seed
vertices to the artificial sink with unit capacity.
After augmenting the Web graph, we use a maxi-
mum-flow procedure to produce a residual-flow
graph. All vertices accessible from s through non-

Computer

procedure APPROXIMATE-FLOW-COMMUNITY
input : set: S.
while number of iterations is less than desired do
Set G=(V, E) to fixed depth crawl from S.
Set kto| S| .
call : C = EXACT-FLOW-COMMUNITY(G, S, k).
Rank all ve Cby number of edges in C.
Add highest ranked non-seed vertices to S.
end while
output : all ve Vstill connected to s.
end procedure

(b)

zero positive edges form the desired result and sat-
isfy our definition of a community.

The approximate-flow-community algorithm
takes a set of seed Web sites as input, crawls to a
fixed depth, including both inbound and outbound
hyperlinks, and queries search engines to find
inbound hyperlinks. The algorithm then applies the
exact-flow-community procedure to the induced
graph from the crawl, ranks the sites by the num-
ber of edges each has inside the community, adds
the highest-ranked nonseed sites to the seed set, and
iterates the procedure. The first iteration may only
identify a very small community. However, adding
new seeds identifies increasingly larger communi-
ties. Note that k is chosen heuristically.

With access to the entire Web graph, the exact-
flow-community algorithm returns a set of Web
pages that complies with our definition of a com-
munity because the maximum-flow procedure
always finds a bottleneck from the source to the
sink. Thus, any page that remains connected to the
source must have more hyperlinks in the commu-
nity than outside it; otherwise, a more efficient cut
would have moved the Web site in question to the
noncommunity.

In the exact-flow-community algorithm, the arti-
ficial sink is generic in that it is on the receiving end
of an edge from every other vertex in the graph.
Thus, separating the source from the sink finds a
community that is strongly connected internally but
is relatively disconnected externally from the rest
of the graph.

We used the approximate-flow-community algo-
rithm to find our experimental results. However,
we could also exploit the Web’s dynamic nature
with an iterative approximate algorithm that tests
for new candidate community members by count-



Francis Crick Community

Stephen Hawking Community

Ronald Rivest Community

Score Site title or description

Score Site title or description

Score Site title or description

80 Biography of Francis Harry 85

Professor Stephen W. 86

Ronald L. Rivest home page

Compton Crick (Nobel Hawking’s Web pages
Foundation)

79 Biography of James Dewey 46 Stephen Hawking’s 29 “Chaffing and Winnowing:

Watson (Nobel Foundation) Universe (PBS) Confidentiality without
Encryption”

51 The Nobel Prize in Physiology 17 The Stephen Hawking 20 Thomas H. Cormen’s home
or Medicine 1962 (Nobel pages page at Dartmouth
Foundation)

50 “Biographical Sketch of 1115 “Stephen Hawking Builds 9 “The Mathematical Guts of

James Dewey Watson”
(Cold Spring Harbor Lab.)

Robotic Exoskeleton”
(parody in The Onion)

RSA Encryption”

41 “A Structure for Deoxyribose 14 Stephen Hawking and Intel 8 German news story on
Nucleic Acid” (Nature, 2 Apr. Cryptography
1953)
1 Felix D’Herelle and the 1 “Did the Cosmos Arise from 1 Phil Zimmermann’s PGP
Origins of Molecular Biology Nothing?” (MSNBC) Web page
(Amazon.com)
1 Biography of Gregor Mendel 1 Spanish page for Stephen 1 “A Very Brief History of
Hawking’s Universe Computer Science”
1 Magazine: HMS Beagle Home 1 Relativity Group at DAMTP, 1 Cormen/Leiserson/Rivest:
Cambridge Introduction to Algorithms
1 The Alfred Russel Wallace 1 Millennium Mathematics 1 Security and encryption links
Page Project
1 US Human Genome Project 1 Particle physics education 1 HotBot Directory: Computers
5 Year Plan and information sites & Internet, Computer Science,

ing the number of candidate links that fall within
the preexisting community.

EXPERIMENTAL RESULTS

To test the approximate-flow-community identi-
fication algorithm, we used the personal home pages
of three prominent scientists—Francis Crick,
Stephen Hawking, and Ronald Rivest—as a single
seed in three separate runs. Each trial of the approx-
imate algorithm produced communities consisting
of approximately 200 Web pages. At the later stages
of the runs, the induced graphs often contained tens
of thousands of vertices. Thus, the algorithm pruned
many pages to produce these communities.

Figure 3 shows the top five and bottom five pages
for each community, with the scores indicating the
total number of inbound and outbound links that
a Web page has to other pages in its community.
The majority of Web pages found were highly top-
ically related, often in nontrivial ways. For exam-

People: R

ple, the Crick community contained many refer-
ences to Darwin, the Human Genome Project, and
Rosalind Franklin. Likewise, the Hawking com-
munity contained many sites dealing with cosmol-
ogy, relativity, and Cambridge University, while the
Rivest community contained numerous encryption
Web sites along with sites focusing on his coau-
thors. Lower-ranked pages were usually topically
related to the seed scientist, although they might
not include that scientist’s name.

Table 1 shows how we more completely charac-
terized the three communities by extracting all text
features—a word or consecutive word pair—from
the pages within a community and from 10,000 ran-
domly chosen Web pages. We then sorted all fea-
tures in the community according to their ability to
separate community pages from noncommunity
pages, as measured by the Kullback-Leibler metric.
Thus, Table 1 lists the features that are most useful
for separating community pages from noncommu-

Figure 3. Sample
results generated
using the approxi-
mate-flow-commu-
nity algorithm,
showing the top five
and bottom five
pages for each com-
munity.
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Table 1. The 15 most significant text features for each community, sorted in
descending order using the Kullback-Leibler metric.

Community Most significant text features

Crick crick, nobel, dna, “francis crick,” “the nobel,” “of dna,” watson,
“james watson,” francis, molecular, biology, genetics, “watson
and,” “structure of,” “crick and”

Hawking hawking, “stephen hawking,” stephen, “hawking s,” “s universe,”
physics, “black holes,” “the universe,” cambridge, cosmology,
einstein, relativity, damtp, “universe the”

Rivest rivest, “I rivest,” “ronald I,” ronald, cryptography, rsa, “ron rivest,”
Ics, “theory Ics,” encryption, “lcs mit,” theory, chaffing, winnowing,
crypto

” o«

nity pages. The extracted features support our
hypothesis that link-based communities are topically
related.

To obtain more precise characterizations of the
communities, we exhaustively searched for all three-
term binary classifiers that disambiguate community
from noncommunity pages. Simple disjunctive
expressions of community-related keywords matched
a large fraction of the communities with low false-
alarm rates. For example, crick or nobel or darwin
matched 54 percent of the Francis Crick community
but only 0.5 percent of random Web pages. Similarly,
hawking or relativity or for mathematical matched
84 percent of the Stephen Hawking community, but
only 0.2 percent of random pages. Finally, rivest or
cormen or to encrypt matched 85 percent of the
Ronald Rivest community versus 1.3 percent of ran-
dom pages. The pages in the communities are highly
related topically in that they have simple and com-
pact descriptions in the form of binary classifiers.

In comparison, simple breadth-first crawl strate-
gies quickly lose topical relevance. For the three sci-
entists we investigated, only about 10 percent of
pages at a depth of two from the seed site matched
our classification rules. In contrast, the communities
that we identify have pages up to a depth of five links
from the seed site. Breadth-first crawling to this
depth would yield an enormous number of pages.’

link structure, we can efficiently identify
highly topically related communities whose
individual members can be spread over a large area
of the Web graph. Because our method is com-
pletely divorced from text-based approaches, we
can use the communities we identify to infer mean-
ingful text rules and augment text-based methods.
Global community identification permits analysis

B ased only on the self-organization of the Web’s

Computer

of the entire Web and the objective study of rela-
tionships within and between communities such as
scientific disciplines or countries. Such research could
provide insight into the organization and interests
of sectors of society. For example, links between sci-
entific disciplines could facilitate more timely iden-
tification of emerging interdisciplinary connections.
Applications of our method include creating
improved search engines, content filtering, and
objective analysis of Web content and the relation-
ships between Web communities. Specialized search
engines could identify the community of pages
within their domains, individuals could identify
communities of others with similar interests, and
Web-filtering software could identify the commu-
nity of pages to be filtered. Finally, objective and
rigorous analysis of the entire Web, taking into
account issues such as the “digital divide,”'® may
help improve our understanding of the world.
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