Department of Computer Science

Learning Context-free Grammars: Capabilities and
Limitations of a Recurrent Neural Network with an
External Stack Memory*

Sreerupa Das

University of Colorado
Boulder, CO 80309

rupa@cs.colorado.edu

Abstract

This work describes an approach for inferring De-
terministic Context-free (DCF) Grammars in a
Connectionist paradigm using a Recurrent Neu-
ral Network Pushdown Automaton (NNPDA). The
NNPDA consists of a recurrent neural network con-
nected to an external stack memory through a com-
mon error function. We show that the NNPDA is
able to learn the dynamics of an underlying push-
down automaton from examples of grammatical
and non-grammatical strings. Not only does the
network learn the state transitions in the automa-
ton, it also learns the actions required to control
the stack. In order to use continuous optimiza-
tion methods, we develop an analog stack which
reverts to a discrete stack by quantization of all
activations, after the network has learned the tran-
sition rules and stack actions. We further show an
enhancement of the network’s learning capabilities
by providing hints. In addition, an initial compar-
ative study of simulations with first, second and
third order recurrent networks has shown that the
increased degree of freedom in a higher order net-
works improve generalization but not necessarily
learning speed.

Introduction

Considerable interest has been shown in language in-
ference using neural networks. (For more traditional
approaches to inference of grammars see [Miclet 90].)
Recurrent networks in particular, with various train-
ing algorithms, have proved successful in learning reg-
ular languages, the simplest in the Chomsky hierarchy.
Work by [Elman 90], [Giles 90], [Mozer 90], [Pollack 91],
[Servan-Schreiber 91], [Watrous 92], and [Williams 89
have demonstrated that the recurrent nature of these
networks is able to capture the dynamics of the un-
derlying computation automaton. [Giles 92a] and [Wa-
trous 92] have used higher order (higher dimensional

*Published in the Proceedings of The Fourteenth Annual
Conference of The Cognitive Science Society, Morgan Kauf-
mann, San Mateo, CA. p. 791-795, 1992.

C. Lee Giles
NEC Research Institute
4 Independence Way
Princeton, NJ 08540

giles@research.nec.nj.com

Guo-Zheng Sun

University of Maryland
College Park, MD 20742

sun@sunext.umiacs.umd.edu

weights) recurrent neural networks with no hidden layer
and showed that such models are capable of learning
state machines and appear to be at least as powerful
as any multilayer network. Using a heuristic clustering
method, [Giles 92a] showed that finite state automata
could be extracted from the neural networks both dur-
ing and after training. [Giles 92b] successfully demon-
strated a method for learning an unknown grammar.

This work is concerned with inference of DCF gram-
mars - moving up the Chomsky hierarchy. This re-
current neural network model, previously described by
[Sun 90] and [Giles 90], has an external stack memory
integrated through a hybrid error function, hence mak-
ing it powerful enough to learn DCF grammars. Previ-
ous work by [Williams 89] showed that, given both the
training set and action information of the read/write
head of a Turing Machine, a recurrent network is capa-
ble of learning the finite state machine part of the Tur-
ing Machine that recognizes the training set. The model
described here learns both the stack control (pushing
and poping of the stack) and the state transitions of the
underlying finite state automaton of the pushdown au-
tomaton. This is performed by extracting information
only from the training data. The learning capabilities
of the inferred Pushdown Automaton is enhanced by
providing more information, hints, about the training
strings. For other work on the use of recurrent neural
neicworks for DCF inference, see [Allen 90] and [Pollack
90].

The stack is ezternal and continuous. The reason for
using an external stack, as opposed to an internal one,
[Pollack 90], is that the external stack requires lesser
resources for training. The continuous part permits the
use of a continuous optimization method, in our case
gradient-descent. We present a brief description of the
model, discuss the dynamics of the stack action and
give simulation results of learning performance.

Neural Network Pushdown Automaton

(NNPDA)
The network consists of a set of fully recurrent neu-

rons, called State Neurons which represent the states
and permit classification and training of the NNPDA.

Institute for Advanced Computer Studies

Y

Table 1: Left column indicates the content of the stack;
Right column indicates the quantity of each alphabet on
stack. Top of the stack is a.

One of the state neurons is designated as the Ouiput
Neuron. The State Neurons get input (at every time
step) from three sources, namely, from their own re-
current connections, from the Input Neurons and from
the Read Neurons. The Input Neurons register external
inputs to the system. These external inputs consist of
sequences of characters of strings fed in one character at
a time. The Read Neurons keep track of the symbol(s)
on top of the stack. One non-recurrent neuron, called
the Action Neuron indicates the stack action (push, pop
or no-op) at any instance. The continuous valued acti-
vation of this neuron is used to perform analog actions
(namely push and pop) on the stack. The architecture
of the Neural Network is shown in Figure 1.

Many appropriate error functions could be devised.
The one we chose to train the network consists of two er-
ror functions: one for legal strings and the other for ille-
gal strings. For legal strings we require 1). the NNPDA
must reach a final state and 2). the stack must be empty.
This criterion can be reached by minimizing the error:

Error = 1/2[(1 = S,(1))? + L(1)?] (1)

where S,(!) is the activation of an Output Neuron with
its target value for legal strings as 1.0 and L(!) is the
stack length, all after a string of length [has been pre-
sented as input a character at a time. For illegal strings,
the error function is modified as:

Error = S,(I) = L(l) if (So(l)—L(1)) >0.0 (2)

otherwise Error = 0.0. Equation (2) reflects the cri-
terion that, for an illegal pattern we require either the
final state S,(I) = 0.0 or the stack length L(l) to be
greater than 1.0.

Stack Control

The analog stack is external to the network and is
manipulated by the action neuron with continuous acti-
vation values. Since the activation of the action neuron
is continuous valued, the pushing and popping is also
continuous. Associated with each element on the stack
is an analog value. An example of the stack would be
the one shown in Table 1. It has 0.4 of a stacked over
0.5 of b and so on. Operations on the stack are de-
termined by the activation of Action Neuron, S,. The
value of S, is allowed to vary between +1 and —1. The
operations will be described as follows:

PUSH: If the activation of ActionNeuron, S, is sig-
nificantly positive the action taken is push. In our

oo| o in| o

o|T|e|o

Table 2: After pushing 0.6 of ¢ onto stack shown in
Table 1.

a | .1
)
c | .8

Table 3: After poping 0.9 from the stack in Table 2.

simulations we performed push when the magnitude of
Sa > 0.1. In case of push the current input is pushed on
the stack and its value is determined by the magnitude
of the activation of ActionNeuron. Therefore, for the
stack shown in Table 1, S, = 0.6 and the current input
is ¢, then, after the operation, the stack would appear
as shown in Table 2.

POP: If activation of ActionNeuron is sufficiently
negative, the action taken is pop. In this case, quantities
stored on the stack are removed up to a depth denoted
by the magnitude of S,. Therefore, for the stack in
Table 2 and S, = —0.9, after the pop operation stack
would appear as shown in Table 3. For our simulations
we performed pop if S, < —0.1.

READING from the stack: At every time step (or
with processing of every element of the input string),
the information on top of the stack has to be updated
every time an action is taken. This is done as follows.
All the elements on the top of the stack up to a depth
of 1.0 (i.e., all the symbols whose quantities add up to
1.0 from the top) are considered. Then their individual
quantities on the stack are used as the corresponding
activations of the Read Neurons in the next time step.
For example, the Read information of the stack shown
in Table 3 would be R, = 0.1; Ry = 0.5, R. = 0.4 if we
consider only three input symbols. It should be noted
that our goal is to train the network to take the correct
actions, and as training proceeds all magnitudes of S,
should approach 1 or 0. Hence, the quantities of symbol
pushed and popped on the stack would also approach
1. Thus, after training, a specific reading of the stack
should contain only one symbol and the performance of
the analog stack should approximate that of a discrete
one.

NO OPERATION: If the magnitude of S, is signifi-
cantly small, no operation is taken. For our simulations
we performed a no-operation if —0.1 < S, < 0.1.

Training of the NNPDA

The activation of State Neurons (and Action Neuron)

may be written as

S(t+1)=F(S(@), 1(t), R(t); W) (3)
where [is the activation of the Input Neurons and R is
the activation of the Read Neuron and W is the weight
matrix of the network. We use a localized represen-
tation for Input and Read symbols (thus, a symbol is
uniquely represented by a vector which has only one 1
and all other elements 0). We now describe the differ-
ent forms equation (3) take for different orders of the
State, Read and Input Neurons.
For First Order, let V(t) represent a concatenation of
vectors I(t), R(t) and S(t), i.e., V(t) = I(t) ® R(t) &
S(t). Then equation (3) becomes

Si(t+1) = gD Wi V(1) (4)
For Second Order, let V(t) represent concatenation of
vectors I(t) and R(t), i.e., V(t) = I(t)® R(t). Equation

(3) becomes

Sit+1) = gD WijnS; V(1)) ()

For Third Order equation (3) becomes

Si(t+1)= g(z Z Z WijeiS; (8) Ik (t) Ri(t)) (6)

where g(z) = 1/(1 + exp(—2)).

At the end of each input sequence of alphabets
ag, a1, ds,....a;_1, a distinct symbol called the end-
marker is presented to the network. The activation of
the OQutput Neuron at this point is compared with the
Target. The end symbol is useful because there may
be more than one final state and we want to accept a
string whenever the string reaches some final state. The
end symbol facilitates computation by effectively con-
structing an extra hidden layer. Adjusting the weights
connected to the end symbol neuron (since the input
has a local representation, only one input neuron turns
on to represent a symbol) corresponds to the training
of a super-final state.

There are two coupled functions that the network
needs to learn in the process of training: the state
transition function and the stack manipulation func-
tion. During training, input sequences are presented
one at a time and activations are allowed to propagate
until the end of the string is reached. Once the end is
reached the T'arget is matched with the Quiput Neuron
and weights are updated in accordance with the learn-
ing rule. The learning rule used in the NNPDA is a
significantly enhanced extension to Real Time Recur-
rent Learning [Williams 89).

For the First-order network, using the objec-
tive function defined by equation (1) and (2) in a
gradient-descent weight update expression AW;; =
—nOError/0W;;, the weight update rule becomes

n((Target — S,(1))0S,(1)/OW;;—
L()OL()/0W;;) for equation 1
—H(OS(1)/ 0 — OL() W)
for equation 2

(7)

AW =

where 7 is the learning rate. Then, 0S,(l)/0W;; can
be calculated from the following recurrence relation by

setting 05,,(0)/0W;; = 0.0.
ISm(t+1)/0W;5 =
9 BmiVi(t) + > Winn0Sn (t)/0Ws; +
> " Winn0Rn(t)/0Wij) (8)

where 8,,; =1if m=i, g =d(g(z))/dx.

How do we obtain OR(t)/0W;;? Since the current
stack reading depends on its entire history, no simple
recurrence relation can be found. However, the follow-
ing approximation appears valid. It may be noted that
we are able to differentiate R only because the stack is
continuous. Also, after the network has been trained
sufficiently and action values are large (> 0.5), each
reading may not contain much information of the past.
We obtain an approximate value of dR(t)/0W;; as fol-
lows:

IR(t)/OWij = (9R(1)/05a(1))(0Sa(t)/OWij)

where S,(t) is the activation of the Action Neuron.

During push and pop, any incremental (or decremen-
tal) change of AS, in S, would cause an increase (or
decrease) of R in the top of the stack with the same
amount. Therefore,

OR;/0S, = 1

if R; corresponds to the symbol on top of the stack.
Also, since the total reading length (equal to 1) is fixed,
any incremental (or decremental) change of AS, in S,
would also cause a decrease (or increase) of R in the
bottom of the stack. Hence,

OR;/0S, = —1

if R; corresponds to the symbol at the bottom of the
stack. It may be noted that, these are only first order
approximations with the assumption that the network
has been trained sufficiently so that actions are large in
magnitude (close to 1.0).

Therefore OR,,(t)/0W;; may be approximated as:

R (1)/OWij & (8mry = bmr;)0Sa(8)/0Wis) (9)

where r; and 7y are the indices of the symbols on top
and bottom of the stack respectively, and &, =1 if
m = r;. Having defined 0R(t)/0W;; and assuming all
partial derivatives at time = 0 to be 0, 85, (l)/0W;;
can be evaluated, where [is the length of the input
string being processed.

Since the stack length L(¢) may be recursively eval-
uated by

Lt +1)=L(t) + S.(t) (10)

the second partial derivative, 0L(l)/0W;;, in equation
(7) may be expressed as

OL(t + 1)/0W;; = OL(t)/OWi; + 0Sa(t)/0Wy (1)

For an initial condition let 0L(0)/0W;; = 0.0, then
OL(l)/OW;; can be evaluated by the above recursion.
Therefore, by imposing the “on-line” learning algo-
rithm, the derivatives of the weights are propagated
forward using the recursive formula and the final cor-
rection AWj;; is made at the end, after one whole input
string has been presented. The learning rules for sec-
ond and third order networks are exactly the same in
nature but vary in the type of interconnections or the
W matrix.

To determine the time complexity of the learning
algorithm, let S and I be respectively the number
of fully-connected recurrent and input neurons and
[the length of the input string. Then the number
of operations required per time step is of the order
I (S+1)?%(S+ R)*(I+ S+ R) for a first-order
recurrent network (primarily dominated by the compu-
tation of the partial derivatives in equation (8)) The 1
in S+ 1 takes into account the action neuron. Similarly
a second and a third order network require respectively
IxS?%x(S+1)2x(I+R)? and [+ S? x(S+1)? x I? x R%.
Note that for large S, the complexity goes as O(S*).

Learning with Hints

Our training sets contained both positive and neg-
ative strings. One problem with training on incorrect
strings is that, once a character in the string is reached
that forces the string to a reject state, no further infor-
mation is gained by processing the rest of the string.
For example, if we are training the network on lan-
guage a”b" and we come across a string that begins
with aaaaba..., no matter what follows the last a in the
string, it is unnecessary to parse and train the network
on rest of the string any further. In order to incorpo-
rate this idea we have introduced the concept of a Dead
State.

During training, we assumed that there is a teacher
or an oracle who has some knowledge of the grammar
and is able to identify the points on the strings (of neg-
ative examples) that takes the strings to a reject state.
When such a point is reached in the input string, fur-
ther processing of the string is stopped and the network
is trained so that one designated State Neuron called
the Dead State Neuron is “on”. To accommodate the
idea of a Dead State in the learning rule, the following
change is made: if the network is being trained on ille-
gal strings that end up in a Dead State then the length
L(!) in the error function in equation (1) is ignored and
simply becomes Error = 1/2(Target — S,(I))?. Since
such strings have an illegal sequence, they cannot be a
prefix to any legal string. Therefore at this point we do
not care about the length of the stack.

For strings that are either legal or illegal but do not go
to a dead state (an example of such a string would be a
prefix of a legal strings, that ends prematurely); the ob-
jective function remains the same as described earlier in
equation (1) and equation (2). Hints in this form made
learning faster, helped in learning of exact pushdown

automata and made better generalizations. For certain
languages, these hints actually made learning possible.
There are methods for inserting hints (rules) directly
into recurrent neural networks [Omlin 92]; it would be
interesting to see the effect of using these methods in
training a NNPDA.

Simulations

The training data consisted of sequence of strings
generated in alphabetical order from the input alphabet
set. Incremental, real-time learning was used to train
the NNPDA. In other words, the length of the strings in
the training set was increased in steps, gradually as the
network learned the smaller ones. At the beginning of
each run the weights were initialized with a set of ran-
dom values chosen between [-1.0, 1.0]. Training began
with the shortest possible strings (of length one).

Once the network learned to recognize the strings in
the current training set, longer strings (of length one
more than the longest string in the current set) were
added to the training set. Longer strings were added
when either of the two criteria was satisfied: (1) a
threshold number of epochs were completed, (2) net-
work learned to recognize all strings in the training
set before completing the threshold number of epochs.
Epochs here imply one pass over the training set. A
training set was considered to be successfully learned
when all the strings in the set were recognized correctly.
In general, for every language trained, this threshold
was varied until the performance (in terms of total num-
ber of epochs needed for training) could not be further
increased. For most simulations, the threshold for the
number of epochs ranged between 20 and 40.

If the correct stack actions are learned by the
NNPDA, then adding longer strings would not increase
the error. This was used to estimate an upper bound
for the maximum length of training strings to be used.
The maximum length of the strings required for train-
ing was usually limited to ten. For simple languages
like a™b™, training strings of length up to siz were suf-
ficient to train the NNPDA. For a particular length,
since the number of positive strings was much smaller
than the number of possible negative strings, a positive
string of the same length was placed every third string
in the training set. Thus, a small set of positive strings
were repeated many times in the training set. Once
the network was trained, the actions and states were
quantized so as to extract a perfect pushdown automa-
ton. This eztracted pushdown automaton can recognize
strings of arbitrary length. For a discussion of this ex-
traction method, see [Sun 90] and [Giles 90] and, more
recently, for finite state automata [Giles 92a).

The same simulation criteria and initial conditions
described above were used for training NNPDA of vari-
ous orders. A comparative performance of the networks
of first, second and third orders in terms of number of it-
erations required, generalization capability and number
of neurons are shown in Tables 4, 5 and 6. The values in

the tables were typical ones obtained in our simulations;
changing the initial conditions resulted in values of sim-
ilar orders of magnitude. These tables show statistics
for the minimal machines learned.

Conclusions

A neural network pushdown automaton (NNPDA)
was constructed by connecting a recurrent neural net-
work state controller to an external stack memory
through a joint error function. This NNPDA was shown
to be capable of learning a range of small, but inter-
esting, deterministic context-free (DCF) grammars. A
continuous external stack was constructed that permit-
ted the successful use of continuous optimization meth-
ods (gradient-descent). The NNPDA learned to make
efficient use of this stack. When it was trained on regu-
lar languages, e.g. (single parity, where the odd or even
occurrence of a single symbol is checked for acceptance),
the network learns the state transitions without making
use of the stack. However, a language like parity could
have been learned using a stack, that is, it could have
used the stack by pushing a symbol on every odd oc-
currence of a character and popping the stack on every
even occurrence. But the NNPDA error function ap-
parently allows the network to selectively avoid using
the stack when the language can be learned without it.

Simulations varying the order of the recurrent net-
work showed that, in general, the higher the order of
the net, the easier it was to learn grammars. (For some
grammars, higher order proved to be a necessity for suc-
cessful training!) However, it proved possible to learn
a simple DCF Language such as the parenthesis match-
ing grammar by using only first-order networks. We
also observed that the stack was able to learn to change
its stack actions. For example, in learning the language
a™b"cb™a™, the stack had to learn to push a’s and push
b’s when it saw an a and then reverse that process.
Third order networks do not necessarily perform much
better than second order networks. One possible expla-
nation is that in the higher order networks the increase
in the degrees of freedom slows down convergence. Of
course the network has only learned small DCF gram-
mars; larger grammars should be much more difficult.
However, the NNPDA was able to learn how to effi-
ciently control and use an external stack while at the
same time learning its neural network state machine
controller.

Acknowledgement

The authors would like to acknowledge helpful and
useful discussions with M. Goudreau, C. Miller, M.
Mozer, C. Omlin, H. Siegelmann, P. Smolensky and D.
Touretzky.

References

[Allen 90] Allen, R.B., 1990. Connectionist Language
Users. Connection Science 2(4): p 279.

[Elman 90] Elman, J.L., 1990. Finding Structure in
Time. Cognitive Science 14:p. 179.

[Giles 90] Giles, C.L.; Sun, G.Z.; Chen, H.H.; Lee,
Y.C.; Chen, D., 1990. Higher Order Recurrent Net-
works & Grammatical Inference. Advances in Neu-
ral Information Systems 2, D.S. Touretzky (ed),
Morgan Kaufmann, San Mateo, Ca:p. 380.

[Giles 92a] Giles, C.L.; Miller, C.B.; Chen, D.; Chen,
H.H.; Sun, G.Z.; Lee, Y.C., 1992. Learning and Ex-
tracting Finite State Automata with Second-Order
Recurrent Neural Networks. Neural Computation
4(3):p. 393.

[Giles 92b] Giles, C.L.; Miller, C.B.; Chen, D.; Sun,
G.Z.; Chen, H.H.; Lee, Y.C., 1992. Extracting and
Learning an Unknown Grammar with Recurrent
Neural Networks. Advances in Neural Information
Systems 4, J.E. Moody, S.J. Hanson, R.P. Lipp-
mann (eds), Morgan Kaufmann, San Mateo, Ca.

[Miclet 90] Miclet, L., 1990. Grammatical Inference,
Syntactic and Structural Pattern Recognition; The-

ory and Applications, H. Bunke and A. Sanfeliu
(eds), World Scientific, Singapore, Ch 9.

[Mozer 90] Mozer, M.C.; Bachrach, J., 1990. Discov-
ering the Structure of a Reactive Environment by
Exploration. Neural Computation 2(4):p. 447.

[Omlin 92] Omlin, C.W.; Giles, C.L., 1992. Training
Second-Order Recurrent Neural Networks Using
Hints. Proceedings of the Ninth International Con-
ference on Machine Learning, D. Sleeman and P.
Edwards (eds). Morgan Kaufmann, San Mateo,
Ca.

[Pollack 90] Pollack, J.B., 1990. Recursive Distributed
Representations. J. of Artificial Intelligence 46:p.
77.

[Pollack 91] Pollack, J. B. 1991. The Induction of Dy-

namical Recognizers. Machine Learning T:p. 227.

[Servan-Schreiber 91] Servan-Schreiber, D.; Cleere-
mans, A.; McClelland, J.L.; 1991. Graded State
Machine: The Representation of Temporal Con-
tingencies in Simple Recurrent Networks. Machine
Learning T:p. 161.

[Sun 90] Sun, G Z.; Chen, H.H.; Giles, C.L.; Lee, Y.C.;
Chen, D., 1990. Neural Networks with External
Memory Stack that Learn Context-Free Grammars
from Examples. Proceedings of the Conference on
Information Science and Systems, Vol. II: p. 649.
Princeton University, Princeton, NJ: Conference
on Information Science and Systems, Inc.

[Watrous 92] Watrous, R.L.; Kuhn, G.M., 1992. Induc-
tion of Finite-State Languages Using Second-Order
Recurrent Networks, Neural Computation 4(3).

[Williams 89] Williams, R.J.; Zipser, D., 1989. A
Learning Algorithm for Continually Running Fully
Recurrent Neural Networks. Neural Computation

1(2):p. 270.

State(t)

push

Top-of-Stack(t)

pop or no—op

O

"

State(t-1)

— QOQ
/g%\%

State Neurons

QAction

P
O

Input Neurons

m

Input(t—1)

.

“\ higher order

weights

A
..... v 1o
External
A | Stack
\
\
>\

aIN\abet on stack

Read Neurons

"

Top—-of-Stack(t—1)

= Flow of Information

Figure 1: The figure shows the architecture of a third-order NNPDA. Each weight relates the product of Input(i-1),
State(t-1) and Top-of-Stack information to the State(t). Depending on the activation of the Action Neuron, stack
action (namely, push, pop or nooperation) is taken and the Top-of-Stack (i.e. value of Read Neurons) is updated.

Order

parenthesis a”b” ab?eb™a™ a?Tmpnem
of NN | hints | w/o hints hints w/o hints | hints | w/o hints hints w/o hints
Tst 50-100 FHF 300-500 FHF FHF FHF EEES EEES
2nd 50-80 80-100 | 150-300 300 500 ok 200-250 ok
Jrd 50-80 50-80 150-250 | 150-250 150 kK 150-250 Hork

Table 4: Iterations required by first, second and third order networks to learn various languages with and without
hints and under same initial conditions, namely, same initial learning rate, same initial value of state neurons, same
random number and same input set (“***” in the table implies that the simulation did not converge).

Order parenthesis a”b”? ab"eb™a™ atTmpnem

of NN | hints | w/o hints | hints | w/o hints | hints | w/o hints | hints | w/o hints
Tst 0.0 FEE 39 FHF FHF FHF FHF FHF
2nd 0.0 3.07 0.0 2.67 5.56 Hokk 0.0 ok
3rd 0.0 0.0 0.0 1.03 3.98 HoHk 0.0 rokk

Table 5: Generalization (in % error on all possible strings up to length 15, starting from length 1, that is, with 65534

strings).

Order parenthesis a”b”? a™b"cb™ma™ a*Tmpnem

of NN | hints | w/o hints | hints | w/o hints | hints | w/o hints | hints | w/o hints
Tst 371 FHF 371 FHF FHF FHF FHF FHF
2nd 1+1 2 1+1 3 1+1 Hork 142 kK
3rd 141 2 141 2 141 roHk 141 rokk

Table 6: Minimal number of State Neurons required to learn the languages in various orders (for the simulations

with hints one neuron was required explicitly for dead state and hence the “+17s).

