
DEADLINER: Building a New Niche Search Engine

A. Kruger, C. L. Giles, F. M. Coetzee, E. Glover, G. W. Flake, S. Lawrence, C. Omlin
NEC Research Institute
4 Independence Way
Princeton, NJ 08540

ABSTRACT
We present DEADLINER, a search engine that catalogs con-
ference and workshop announcements, and ultimately will
monitor and extract a wide range of academic convocation
material from the web. The system currently extracts speak-
ers, locations, dates, paper submission (and other) dead-
lines, topics, program committees, abstracts, and aÆlia-
tions. A user or user agent can perform detailed searches on
these �elds. DEADLINER was constructed using a method-
ology for rapid implementation of specialized search engines.
This methodology avoids complex hand-tuned text extrac-
tion solutions, or natural language processing, by Bayesian
integration of simple extractors that exploit loose formatting
and keyw ord con ventions.The Bayesian framework further
produces a search engine where each user can control the
false alarm rate on a �eld in an intuitive yet rigorous fash-
ion.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retriev al]: Searc h; D.2.2
[Soft w are]:T ools and Techniques

Keywords
Web searc h, text extraction, Bayesian fusion approaches

1. INTRODUCTION
One of the most exciting bene�ts resulting from devel-

opment of the world-wide web is the increased availabilit y
of specialized search engines. DEADLINER is a specialized
search engine currently under development at NECI, that is
aimed at the academic research community. DEADLINER
monitors the w orld-wide w eb, newsgroups and broadcast
e-mail for conference announcements. The system detects
relevant documents and extracts speakers, locations, dates,
submission and other deadlines, keyw ords, program commit-
tees, abstracts, and aÆliations, all of which are stored in a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM2000 ’2000 USA
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

structured database. A user interface is pro vided that al-
lows the user to construct complicated queries using any of
the extracted �elds. DEADLINER is being extended to ad-
dress smaller local events such as seminars, workshops and
other colloquia. Figure 1 displays some of the capabilities
of DEADLINER.
DEADLINER is an example of a niche search engine; that

is, a search engine that is targeted to a specialized web
communit y.In con trast to general purpose engines such as
Google, specialized engines scour cyberspace with the goal
of indexing only a small subset of documents relevant to the
communit y. The pow er of customized search engines derives
from the fact that the underlying domain is constrained, and
documents within this community have common elements.
By modeling and extracting these elements, complex queries
that tak e adv an tage of the sophistication of the community
members within their �eld can be implemented. Specialized
search engines are also well suited for use as oracles by user
agents. For example, using DEADLINER, a researcher can
do more than simply monitor a selected set of conferences; a
simple calendar-based agent can easily use DEADLINER to
pro vide alerts when a person of interest appears at a lesser
kno wn but local event. Other examples of non-trivial and
highly successful niche searc h engines aimed at the academic
communit y are ResearchIndex [11], and CORA [14] both of
whic h extractcitation �elds from online publications, and
perform full page content and citation analysis.
The major obstacle to creating niche search engines is cre-

ating reliable mechanisms capable of detecting relevant doc-
uments, and extracting target elements, from a wide range of
sources. For example, in DEADLINER, conference related
�elds m ustbe found in documents of widely varying for-
mats, while construction of ResearchIndex required the en-
coding of extensive knowledge concerning citation formats.
Due to the diÆculty of this task, small communities may
not ha ve the resources to construct systems such as DEAD-
LINER or ResearchIndex from the ground up. Aside from
its functional use, DEADLINER was constructed to investi-
gate suitable methodologies for rapidly building specialized
search engines. Ultimately we would like to provide a simple
toolkit, that can be used as a framework for rapid implemen-
tation b y a smalluser community or interest group. This
paper therefore not only serves to in troduce DEADLINER,
but documents a novel and general methodology for building
niche searc h engines.
The methodology inherent in the architecture of DEAD-

LINER reects our belief that documents on the world wide
w eb often contain enough structure (e.g., formatting infor-

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

CIKM 2000, McLean, VA USA
© ACM 2000 1-58113-320-0/00/11 . . .$5.00

272

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

Figure 1: Composite of two DEADLINER interfaces displaying �elds automatically extracted from conference announcements. The

�rst screen shows deadlines and themes, while the second screen shows program committee members.

mation, link structure and keyword �elds) to allow target
�elds to be extracted without resorting to natural language
processing. We favor machine learning, rather than hand-
tuning, of the system. Finally, our architecture emphasizes
the integration of multiple partial solutions for extracting
text �elds rather than a single monolithic solution. Solu-
tions with various degrees of sophistication can readily be
produced by di�erent individuals. We defer detailed com-
parisons with other methodologies to Section 5.
The outline of the paper is as follows. In Section 2 we pro-

vide a high-level overview of the architecture of the search
engine, and outline the major challenges. We then proceed
to address each of the major parts of our general method-
ology. Section 2.1 describes document retrieval while Sec-
tion 2.2 describes pre-screening of documents for relevance
using Support Vector Machines. Section 2.3 describes detec-
tion of target �elds, such as deadlines, by Bayesian integra-
tion of multiple binary detectors. This section presents the
core technical advance of this paper. Section 2.4 discusses
setting operating points and presenting results to the users.
The �lter extractors unique to DEADLINER are described
in Section 3, and their performance in Section 4.

2. GENERAL ARCHITECTURE OVERVIEW

The architecture of the specialized search engine produced
by our methodology is shown in Figure 2. In the �rst stage,
di�erent retrieval mechanisms locate documents in cyberspace.
A second stage performs pre-screening of the documents for
relevancy. Relevant documents are then forwarded to a third
stage, where multiple extraction �lters detect and subse-
quently extract target �elds from the document. Target
�elds are then stored in an SQL database.

The major characteristic of the system is the focus on a
large number of modular extraction �lters for each target
�eld, with automatic integration of these �lters using learn-
ing techniques. This approach resulted from the require-
ment that the system reliably extract target �elds from a
wide variety of disparate formats. At �rst, we tried to ex-
tract each �eld, such as the submission deadline, by con-
structing monolithic solutions. The complexity and e�ort
required to achieve any degree of reliability proved to be pro-
hibitive. However, we found that it is easy to postulate mul-
tiple simple solutions of di�erent speci�city, built on regular
expressions, suited to extracting target �elds from speci�c
formats. Unfortunately, choosing between these di�erent so-
lutions, estimating their robustness, or combining them ap-
propriately, de�es human analysis and intuition. However,
Bayesian learning techniques o�er a solution. The approach
we provide automatically integrates the simple regular ex-
pression �lters in an optimal fashion using relatively modest
amounts of labeled data. Improved performance over a sin-
gle extractor can be achieved, since the integration phase
exploits the joint statistics across the di�erent �lters.
The Bayesian integration step also addresses a second ma-

jor problem that bedevils search engine designers; that of
selecting an operating point that is acceptable for all users.
For visual display, if one has a con�dence ranking on query
matches, one can simply display results in decreasing order
of con�dence. However, when an action is to be automat-
ically triggered (for example, an e-mail is sent or a calen-
dar entry created when a speci�c event is detected), users
can exhibit markedly di�erent tolerance and preferences for
errors. A key consequence of the Bayesian integration ap-
proach of Section 2.3 is that a mechanism results for varying
the operating point for each user, even though the operating
point of each simple extraction �lter is �xed. Performance

273

variation is monotone and controlled by a single parameter.
Further, as new �lters are added, the system can evaluate
their eÆcacy and integrate them as appropriate.

2.1 Stage I: Document Retrieval
A large part of the information in DEADLINER is time

sensitive, and hence a major problem is ensuring currency
without requiring the resources necessary for timely exhaus-
tive crawling of the web. We address this problem using a
multi-pronged approach.
First, we have simple polling scripts that download doc-

uments from well known sources where seminar and con-
ference related materials commonly appear, such as news-
groups, universities and professional organizations.
To provide coverage of the rest of cyberspace, we borrow

systems from other NECI projects. We adopted a Context-
Graph Focused Crawler as an input stage, which uses the
link structure and contents of documents to improve the
retrieval rate of documents related to the training set. A
complete discussion of this technique is beyond the scope of
this paper. We refer the interested reader to [4].
The last input module �nds relevant documents from com-

mercial search engines. For this stage, we extracted query
modi�ers (essentially a list of keywords) that describe our
training data. These query modi�ers are periodically sub-
mitted to approximately ten commercial search engines via
Inquirus 2, a meta-search engine that supports query mod-
i�ers. In this way, we leverage the coverage and bandwidth
of commercial search engines. Detailed descriptions of this
work are available in [6, 7].

2.2 Stage II: Pre-Screening Using SVMs
While some of the retrieval stages (such as the focused

crawler), enforce some degree of document relevancy, the
fraction of irrelevant documents produced by the input stage
is still high. The downloaded documents are therefore pre-
screened using text classi�cation. We favor SVMs for screen-
ing web documents, because of the ability of SVMs to han-
dle large dimensionality vectors while resisting over-�tting.
We used the standard SMO SVM algorithm described by
Platt [17, 18], and we therefore do not describe the details
here. We refer the reader to Kwok [10] and Joachims [9]
for detailed discussions comparing SVMs to several di�erent
text classi�ers, and to Vapnik [20] for a complete technical
description. SuÆce to say that SVMs embed data vectors
in an in�nite dimensional kernel space, typically by locating
a functional kernel on each data vector. The class vectors
are subsequently separated by hyperplanes that maximize
the margins between the di�erent classes, which controls
complexity and ensures generalization. The following para-
graphs detail the construction of the feature vectors we use
as input to the SVM.
We convert all the text documents into a set of binary fea-

tures vectors relative to a �xed vocabulary V . To construct
V , we use a labeled training set. We extract all words, bi-
grams and trigrams from the documents, and calculate the
frequency of occurrence of each of these. If a word, bi- or
trigram occurs in more than 7.5% of either the true, or the
false class documents, it is considered a candidate to be in-
cluded in V . The candidates are ranked in order of the ratio
of their frequency on the true class, to their frequency on
the false class documents. The top N (typically 100 to 300)
candidates then form the vocabulary V .

A document is represented relative to the vocabulary V
by a binary vector x where a 1 occurs in every position
corresponding to the appearance of an element of V in the
document, with zeroes elsewhere. A target value y of either 1
or 0, respectively, indicates whether the document is relevant
or not.

2.3 Stage III: Bayesian Detector Fusion
A major problem in extracting target �elds is �nding suit-

able pieces of the document to apply extraction rules. Ap-
plying an extraction rule blindly to large portions of the
document causes several false alarms. To address this prob-
lem, we decided on an approach that �rst performs reliable
detection of relevant sentences or blocks or text, and then
performs extraction only on regions of high likelihood.
For every target �eld we construct a detector by optimally

integrating a number of simpler detectors. The problem we
address is shown in Figure 3. Consider a set of regular ex-
pressions or simple formatting templates for processing text;
for example, these could all be aimed at extracting the sub-
mission deadline. We refer to these elements as �lters. With
each �lter we associate a binary variable indicating whether
a match occurred or not. The combination of �lter and
match variable will be referred to as a detector, denoted fi
in the �gure. At issue is how to integrate these partial de-
tectors. The integration should yield a new detector whose
performance exceeds that of any of the constituent detectors,
and whose operating point (precision/recall setting) can be
easily changed, even though the �lters are all �xed.
We formalize the problem as follows. Each of the detectors

function as a binary classi�er, also known as a categorical
function, de�ned as a mapping f from an input space X
(the text) to the space f0; 1g. Given N classi�ers fi : Xi !

f0; 1g, we wish to �nd the classi�er � :
QN

i=1 fi(Xi)! f0; 1g
with the highest probability of detection for a given rate of
false alarm.
We use the binary detector outputs as a new feature space.

We denote the combined output of the detectors for a given
set of inputs x by a bit string, or more formally the ordered
pair y = f(x) = (y1; y2; : : : yN) = (f1(x1); f2(x2); : : : fN (xN)) ; xi 2
Xi; i = 1; 2; : : : N . We assume two hypotheses H0 (false
class, or irrelevant) and H1 (true class, relevant), which
yields class conditional probabilities P ff(x) j H0g and P ff(x) j H1g
respectively on the feature space. The problem of combining
the simple detectors is then equivalent to that of selecting
� from the set of all categorical mappings on N binary vari-
ables. Considering all inputs x yields up to 2N possible bit

strings y. It follows that there are up to 22
N

distinct di�er-

ent classi�cation rules �j ; j = 1; 2; : : : 22
N

for combining the
simple detectors. Each of these decision rules � will yield a
particular value of false alarm Pf and of detection Pd, de-
�ned by summing over the set of bins L(�) labeled as true
class by the classi�er:

Pf (�) =
X

y2L(�)1

P fy j H0g Pd(�) =
X

y2L(�)1

P fy j H1g(1)

The set AOS = f(Pf (�j); Pd(�j))g of the operating points

de�ned by the 22
l

binary mappings on a feature set is re-
ferred to as the Achievable Operating Set. The Receiver
Operating Curve (ROC) is the set of operating points yield-
ing the maximal detection rate for a given false alarm rate.
The ROC eÆciently summarizes the inherent diÆculty of

274

Newsgroup
Scanner

User

FilterFilterFilter

CATALOGING

DATABASE

Meta Search
Query Modified Focused Web

Crawler

Vector Conversion

Document

Features (0/1)

Features (0/1)

SVM

ClassifierTarget Fields

Document

Input Stages

Preliminary
Screening

ζ
Likelihood Ranking

Simple Extractors

Integration

Database Storage
Field Extraction

Figure 2: The basic framework of our specialized search engine implementation. Di�erent modules scan the documents. A primary

classi�er selects individual documents for further processing. A secondary classi�er assigns posterior threshold ratios � to every document

and extracts target elements. The user interacts with the database by selecting a speci�c operating point for accesses, and providing

standard queries.

Integrator
f

f
2

1
Detector

Filter

Classifier

Input

Regular
Expression

Format
Template

Match?

Match?
+/-

+/-

+/-

Figure 3: Our approach to probabilistic binary detector integration. Simple �xed �lters representing partial solutions are generated

using a-priori domain knowledge. The categorical outputs from the �lters extractors are automatically recombined using a classi�er (the

integrator) that exploits the joint statistics.

275

separating the two classes. The subset of the 22
N

classi�ers
�j lying on the ROC will be referred to as the ROC support
classi�ers, and are denoted by the superscripted variables
�i.
Exhaustive enumeration of the classi�ers � to �nd the

ROC is and will be practically impossible except for triv-

ially small cases (even when N = 5, 22
N

' 4:3 � 109). The
Neyman-Pearson (NP) design procedure provides the opti-
mal solution to the problem of eÆciently obtaining the ROC.
This procedure ranks the 2N possible strings x according to
the likelihood ratio function � : �! <+

�(x) = P ff(x) j H1g=P ff(x) j H0g (2)

The ROC support classi�ers are found in order of increasing
false alarm performance by successively assigning strings in
decreasing order of likelihood ratio to the true class decision
region. Hence, there are 2N ROC support classi�ers.
We make the above discussion concrete by providing a

simple example. Consider the hypothetical case where we
have two binary features y = (y0; y1) indicating matches of
two underlying regular expression extractors. Assume that
the true class conditional density functions on the data are
as follows:

y1y0(y) 00(0) 01(1) 10(2) 11(3)
p(yjH1) 0.30 0.35 0.20 0.15
p(yjH0) 0.15 0.25 0.40 0.20

The ROC support classi�ers �i(y); i = 0; 1; 2; 3 developed
via the NP design are as shown below:

y1; y0(y) 00(0) 01(1) 10(2) 11(3) Pf Pd
�(y) 2.00 1.40 0.50 0.75

rank(�(y)) 0 1 3 2
�0(y) 0 0 0 0 0.00 0.00
�1(y) 1 0 0 0 0.15 0.30
�2(y) 1 1 0 0 0.40 0.65
�3(y) 1 1 0 1 0.60 0.80
�4(y) 1 1 1 1 1.00 1.00

For example, to achieve a detection rate of 65% at a false
alarm rate of 40%, we use classi�er �2(x), which e�ectively
uses only the regular expression of �lter 1. A di�erent op-
erating point, such as produced by �3(y) would require ar-
bitrating between the two regular expressions.
An extremely important point to note is that a classi�er

�j is created by labeling all feature combinations y (i.e. his-
togram bins) whose likelihood ratio �(y) � �j , where �j is
the jth ranked likelihood value, as true class. Therefore,
when processing a text �eld, we do not pick a speci�c clas-
si�er and operating point up front. Instead, we map every
feature combination (bin y) to its likelihood �(y), which is
stored in the database. We can then later easily choose any
detection operating point by thresholding the likelihood val-
ues. In this way, every user or agent can maintain a di�erent
operating point by varying a single personal threshold.
Another important bene�t of Neyman-Pearson design is

a degree of robustness to changes in the a-priori class condi-
tional probabilities. A change in these probabilities results
in a shift of the operating point along the ROC, but does
not change the set of ROC classi�ers. Therefore, it is possi-
ble to account for a change in the environment by adjusting
the global user threshold, without a need to re-classify the
stored data set. This property is an advantage on the web,
where it is a diÆcult problem to estimate the a-priori class
probabilities.

The Neyman-Pearson design approach is a search proce-
dure, where the problem of �nding the classi�er functions
� that maximizes the Pd at a given value of Pf is reduced

from searching a space of dimension 22
N

to one of searching
a space of dimension 2N , an enormous reduction in com-
plexity.
In practice, the class conditional distributions are un-

known and statistics must be estimated from a �nite la-
beled data set. Ensuring that the histogram estimates are
accurate is a major subject of investigation. For detailed
analyses and solutions to balancing data set size, reliability
and number of �lters we refer the reader to [3, 2].
However, we note that in the DEADLINER system we

have relatively little training data (on the order of 500 con-
ference pages). As such, we cannot estimate histograms
combining more than approximately four detectors (16 his-
togram bins). To take advantage of the large number of
�lters we therefore have to search for the best combination
of four (or fewer) of the N detectors. Performing a full ROC
calculation for every such subset is feasible when N is less
than approximately thirty, as was the case in our designs.
It is generally not possible to rank ROC curves absolutely

over di�erent subsets of detectors, since ROC curves can
cross. This crossing simply reects the fact that di�erent
combinations of detectors are desirable for di�erent ranges
of operating points. Unfortunately, a severe performance
penalty can result from using a single subset of �lters over
all false alarm rates.
We address this problem by noting that by switching be-

tween the outputs of any two classi�ers with some probabil-
ity, any operating point (Pf ; Pd) on the line connecting the
operating points of the two classi�ers can be produced [19].
Hence, any operating point within the convex hull of the
ROCs of all the detector combinations can be obtained. We
therefore proceed by calculating the ROCs of all the possible
combinations of four or fewer detectors. We then construct
the convex hull of the ROC curves. The resulting ROC curve
is implemented by using di�erent sets of detectors for di�er-
ent operating ranges, and performance exceeds or matches
the performance of any of the possible detector combina-
tions. In this way we retain the bene�t of having a large
number of detectors, while never integrating more features
simultaneously than can be supported by the data.

2.4 Stage IV: Presentation and Cataloging
In the previous section we described how we can combine

the outputs of simple detectors to detect a region of text
that contains a possible match for a target element. How-
ever, we note that in order for the system to work, the search
engine also has to extract the relevant �elds from these text
regions. Note that every extractor produces both a feature
indicating a match (0 or 1), and an actual estimate of the
value of the target element (an associated block of text that
triggered a match). The binary features are integrated as
previously described, allowing for an overall detection oper-
ating point to be set for each target element. A particular
setting might overrule one or more of the constituent �l-
ters, require a particular combination of features, or enforce
some other joint relationship. The text �elds extracted by
the �lters that indicated a match and also have a positive
weight in the integration are merged, and then processed for
extraction using heuristics (e.g., the smallest common text
segment is used).

276

Text
Block

Detector

Match ?

Filter

Filter

Title

Merging Target
Field

Confidence
Threshold

0

1

ζ(01)

Figure 4: Cataloging section showing extraction of a target �eld, here the title. A number of di�erent �lters attempt to recognize the

desired target. Every match results in a binary feature, which is integrated with responses from other detectors. Based on the ROC,

every combination of �lter matches can be mapped to an associated threshold �, ROC support classi�er �j and operating point (Pf ; Pd).

The value of � also reects an overall detection con�dence. This value is stored with every �eld value obtained by merging the �elds of

the active �lters.

Typically we process single paragraphs at a time, and mul-
tiple matches refer to the same text segment. However, in
long paragraphs, or when considering the document as a
whole, a target element can be detected in di�erent places,
even though these elements may be subject to restrictions
(titles almost always occur only once). Further, the data ex-
tracted from the matches may conict. Note, however, that
each integrator provides a con�dence estimate in the form of
the threshold � associated with each detected text segment.
If the con�dence in a given match is much higher than that
of other matches, only the match with the highest con�dence
is used. However, when multiple matches of equal or almost
equal con�dence but di�ering values occur, the system will
index all of the matches. In this way, queries might return
incorrect results, but in principle no irreversible decisions
are made.

3. FILTERS USED IN DEADLINER
The architecture in the previous sections can easily be

ported to di�erent community interests by developing rele-
vant extractors (regular expressions), and labeling a set of
training data. This section describes these detailed compo-
nents of DEADLINER.

3.1 Features and Filters
From visual inspection of a number of document sources,

we soon found that most conference materials follow a block
layout. Major blocks are: the title, a listing of aÆliations,
abstracts, organizers such as a program committee, discus-
sion topics, venue, scope and objective statements, and a
miscellaneous information section (describing topics ranging
from the weather to local social events). The block struc-
ture signi�cantly simpli�es the extraction problem and �l-
ters exploiting it produce excellent results without extensive
natural-language processing.
The simplest �lters in the system perform keyword match-

ing, based on a vocabulary V generated using word frequen-
cies. We also make extensive use of databases of lists of
authors (extracted from ResearchIndex), lists of research ar-
eas and keywords (extracted from ResearchIndex) and venue
and geographical names.

Using these databases, a large number of simple prim-
itives were constructed. The primitives are then used to
construct �lters that enforce constraints related to the block
structure. Table 3.1 shows a subset of the �lters that are
currently implemented; these �lters are aimed at extract-
ing four common elements of conference announcements,
namely title, deadline, topic and program committee. The
�lters are described using an extension of standard regular
expression notation that allow for formatting and database
lookup: * means zero or more (Kleene closure), + means
one or more, <description> indicates information obtained
outside the regular expression, or is used for clarity. We use
! for the set of alphanumeric characters, and & for whites-
pace (newlines, tab-stops, spaces). A range of characters is
denoted by [] (e.g., [A � Z] denotes capitals). The func-
tion indentation(text) returns a list of numbers indicat-
ing the level of indentation for each line in the text, while
max(list) and min(list) returns the maximum and mini-
mum of the numbers in the list respectively. The operators
country names reects presence in a list of country names,
and known names a match in a list of about 90,000 proper
names. We use the notation<regularly occurring separators>
for separators that occur most frequently in a list. The sep-
arator may contain whitespace, but does not consist only of
whitespace, and is always preceded by a newline. A B indi-
cates a word/non-word boundary, and :: is used to indicate a
range. A jmeans "or" (uni�cation), while () indicates group-
ing. The operator ! negates a character set, while a full stop
(.) matches any character except a newline. Occurrences of
a symbol of least n times but not more than m times is de-
noted by fn;mg, while #(<expression>, <expression2>)
counts the number of times<expression2> occurs in<expression>.
In (<expression>,<expression2>) the part<expression>
is the index of the text block, while ^ is used to anchor the
beginning of text.
Constructing �xed lower level �lter parameters using such

simple heuristics is the core of our approach; instead of try-
ing to solve the diÆcult problem of varying parameters in-
ternal to each �lter, we achieve di�erent operating points by
diversifying across di�erent �lters.

3.2 Heuristics

277

Name Primitive Target Meaning

0 (cur par, =$kwds=) title match keywords in current paragraph
1 (cur par, =BonB=) title match "on" in current paragraph

2 #(cur par, =!+&+=) <= 30 title count the number of words

3 #(cur par; =[A� Z]!�&+=)=#(cur par; =!+&+=) >= 0:75 title ratio of capitalized words:words
4 min(indentation(cur par)) 6= min(indentation(prev par)) title difference in indentation
5 #min(indentation(cur par)) 6= min(indentation(next par)) title difference in indentation
6 (cur par, =<date>=) title match a date
7 (cur par::cur par + 5, =<date>=) title match a date in the next 5 paragraphs
8 (cur par;<= 7) title this is one of the first paragraphs
9 (cur par, =<countryname>=) title match a country name
10 #(cur par; =[!!&] + =) > 20 title count the non-whitespace, non-alphanumeric characters

0 (cur sentence; =deadline=i) deadline match the word "deadline"
1 (cur sentence; =byjbeforejduejclosing=i) deadline match "by" or "before" case insensitive

2 (cur sentence; =later&+than=i) deadline match "later than" case insensitive
3 (cur sentence; =on=i) deadline match "on" case insensitively
4 (cur sentence, =<date>=i) deadline match a date
5 #(cur sentence, =<date>=i) � 3 deadline there are three or more dates
6 #(cur sentence, =<date>=i) > 0 deadline match a date
7 (cur sentence; =submi=i) deadline match "submi"
8 (cur sentence; =paper=i) deadline match "paper"
9 (cur sentence, =:=i) deadline match ":"
10 (cur sentence; =notifyjnotificationjacceptjcamera=i) deadline match "deadline qualifiers"

11 (cur sentence; =important&+date=i) deadline match "important date"

0 (prev par; =$kwd=) topic match a keyword
1 (prev par, =:=) topic match a colon
2 (prev par or cur par, =<regularly occurring separator>=) topic is there a regularly occurring separator?
3 (cur par, =<regularly occurring separator>=) topic is there a regularly occurring separator?
4 #(cur par, =:=)=#(cur par, =<line>=) < 0:1 topic ratio of full stops:number of lines
5 (cur par; =$kwd=) topic match a keyword

6 (cur par; =limited)or(cur par; =limited&+to=i) topic match "limited to"
7 (cur par; =includ=i) topic match "includ"
8 min(indentation(cur par)) = min(indentation(next par)) topic minimum indentation differs
9 (cur par; =interest=i) topic match "interest"
10 max(indentation(cur par)) = max(indentation(next par)) topic maximum indentation differs

0 (cur par, =$kwds=) program committee match the keywords
1 (cur par; =univ=) program committee match "univ
2 (next par::next par + 1; =univ=) program committee match "univ
3 (cur par, =<countryname>=) program committee match country names
4 (next par::next par + 1, =<country names>=) program committee match country names
5 (cur par, =<known names>=) program committee match known names
6 (next par::next par + 1, =<known names>=) program committee match known names

7 (cur par; =[!!&]+=) program committee match non-whitespace, non-alphanumeric chars

8 (next par::next par + 1; =[!!&]+=) program committee match non-whitespace, non-alphanumeric chars
9 #(cur par; =B[A� Z]B=) program committee number of single letter words
10 (next par::next par + 1; =B[A� Z]B=) program committee number of single letter words

Table 1: Primitive operators used for constructing �lters. Each primitive is aimed at extraction of a particular target concept. We also

associate a speci�c area of text with each �lter.

As noted earlier, following detection of a target element,
the option exists to use heuristics to combine the text �elds
extracted by the active �lters. For example, a detector
might return a sentence with additional text that has to
be trimmed. We briey describe three elements to provide
an indication of the complexity of the approach:
Program Committees: The text obtained from the detec-
tors is split into tokens and matched against a dictionary
of known author names and possible aÆliations obtained
from ResearchIndex papers (there are approximately 90,000
distinct dictionary elements), then against a list of common
dictionary words, and ultimately a dictionary of country and
place names. All matching words are replaced by symbols
denoting the dictionary in which they were found. We then
use regular expression templates to match the resulting sym-
bolic strings. A regular expression is then constructed for
all the positive matches, and re-applied to the text to �nd
persons not in the dictionary.
Deadlines: We match standard date formats in sentences
and tables. Extraction of the surrounding or immediately
preceding text is used to determine the type of deadline (e.g.,
abstract submission date).
Titles: A title usually contains at least two of the following:
(i) country name, (ii) city/state name, (iii) date of meeting,
(iv) deadline, (v) list of sponsors, (vi) name, (vii) acronym
for the conference, and (viii) theme/summary of the con-
ference. We enforce the presence of at least two elements.
Most elements are recognized by matching entries from a
database. The summary is generated by removing elements
(i) through (viii) from the match.

4. PERFORMANCE
SVM Performance: The data used to train the SVM in Sec-
tion 2.2 was a set of 592 manually classi�ed Calls for Papers
(CFPs), and 2269 negative examples, consisting of several
\random" URLs from the Inquirus 2 logs, and about 850
conference related pages. To qualify as a CFP we require a
title describing the event, a list of topics, a program commit-
tee, deadlines and submission information. CFPs were col-
lected by combining URLs from documents containing lists
of CFPs, and by combining searches from various search en-
gines (For example, search for "Calls for Papers" in a normal
search engine).
The training set consisted of 249 positive and 1250 nega-

tive documents (randomly selected, with a limit of 20 pages
from any one domain to prevent bias). The remaining 343
positive and 1019 negative examples formed the test set.
Table 2 summarizes the results on the test set. As can

be seen, we obtain excellent results using extremely limited
structural processing. From our evaluation of the test set,
we noted that non-English or multilingual sites represent a
major problem for our system, as expected from the biases
of our dictionaries. While a Gaussian kernel in the SVM
produces noticeable improvements over a linear SVM, the
signi�cant extra overhead does not warrant its use at this
moment. We therefore use the linear classi�er.
Extractor Performance: We had 500 documents from DB-
World (http://www.cs.wisc.edu/dbworld/) for training, and
100 documents from DIKU (http://www.diku.dk/research-
groups/topps/Conferences.html) for testing of the feature
extractors. We made the deliberate decision not to gener-

278

Collection Type No. Pos No. Neg Pos. Accuracy Neg. Accuracy
CFP Test Gauss 343 1019 95.9% 98.6%
CFP Test Linear 343 1019 88.1% 98.7 %

Table 2: Summarized results for the SVM call for paper classi�er. There was no overlap with the training set.

ate test and training data by sampling from both data sets.
On the web we are extremely likely to process data sources
that we have had no representative data for. We wanted
to see how fragile our feature extractors are when the class
distributions in deployment di�er signi�cantly from that in
training.
These data sets were labeled to indicate desired target

�elds. The DBWorld documents contain 208 lists of inter-
esting topics, 338 conference titles, 906 deadlines and 197
program committees. We chose not to exclude announce-
ments that strictly are not calls for papers, since our SVM
classi�er misclassi�es a small percentage of web documents,
and we therefore need fairly robust detectors.

0 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pf

P
d

(0,5,8,10)

(5,8,9,10)

(0,1,5,9)

(0,3,4,7)

(0,1,3,6)

(0,1,4,7)

(0,1,3,4)

(0,1,2,6)

N=1
N=2
N=3
N=4

Figure 5: Detection performance for the target �eld \deadlines"

for di�erent numbers of combined detectors N . Also shown are

the optimal indices of the detectors when N = 4. Integrating mul-

tiple detectors provides a signi�cant performance improvement.

For example, at a false alarm rate of 2%, integrating N = 4 de-

tectors results in an improvement of almost 20% over the best

individual detector.

Figures 5-7 contain the ROC curves obtained on the DB-
World data for di�erent integrators that detect the dead-
lines, conference topics and program committee members.
Note that these curves are statistically accurate, conditioned
on the class distribution of new data matching that of the
DBWorld data. In each case we show the performance ob-
tained by the best individual detectors (N = 1), as well as
combinations of from two through four detectors. In each
case a signi�cant performance improvement results from in-
tegrating multiple detectors. For example, for deadline ex-
traction, at a false alarm rate of 2%, integrating N = 4
detectors results in an improvement of almost 20% over the
best individual detector. The curves also show the features
that are preferably integrated as a function of the desired
operating point, for N = 4. The values clearly show that
di�erent combinations are preferred in di�erent ranges, al-
though some �lters, such as the keyword �lters, are always

0 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pf

P
d

(0,3,8,9)

(0,3,5,7)

(0,1,5,7)
(0,1,5,8)

(0,5,9,10)
(0,3,5,7) (0,5,6,7)

N=1
N=2
N=3
N=4

Figure 6: Detection performance for the target �eld \program

committee" for di�erent numbers of combined detectors N . Also

shown are the optimal indices of the detectors when N = 4. In-

tegrating multiple detectors provides a signi�cant performance

improvement.

desirable.
Having detected the target �eld, the actual target �eld

value was extracted using heuristics. These results are con-
tained in the DIKU data, and are shown in Tables 3-4.
The �rst row of Table 3 shows the results on deadline ex-

traction. In each case we selected an operating point with a
target rate of Pf of around 5%. The document set contained
a total of 300 deadline date �elds. Of these, 214 deadlines
were correctly detected and extracted, while 2 dates were de-
tected, but incorrectly extracted. A total of 31 non-deadline
dates were detected and extracted (usually dates from a pro-
gram announcement), and are considered extraneous. Note
that these dates will be indexed but the user can resolve
the ambiguity. We required that the text that describe the
deadlines had to be perfectly extracted: 86% of the time the
text was considered to be correct. Our overall deadline ex-
traction is therefore approximately 70%. By evaluating the
errors, we found that errors usually result when dates are
given in tables; we aim to develop new parsers to improve
processing in this domain.
The second row of Table 3 summarizes the performance

on the program committee extraction task. Of the 1455 pro-
gram committee members, we found 1252 with our system.
This performance corresponds to an 87% accuracy.
Table 4 shows the performance when extracting parts of

the title. Due to the fact that title composition varies widely,
we provide these results as percentages. While we expected
diÆculty with the date �elds, we had relatively disappoint-
ing performance on country and city names. We believe that
an expansion of our dictionaries will improve performance.
Better performance was achieved in identifying the theme
and type of conference; we correctly identi�ed almost 90%

279

Target Total Detected/Extracted Detected/Not Extracted Extraneous

Deadline 300 214 2 31
Committee & AÆliation 1455 1252 72 136

Table 3: Extraction results for target concepts "Deadline" and \Program Committee".

Start Dates End Date Theme/Name Country Type of Meeting
73% 71% 81% 77.5% 85%

Table 4: Extraction results for target concept "Title", with associated sub�elds.

0 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pf

P
d

(0,3,4,9)

(0,2,3,4)

(0,2,3,10)

(0,3,5,6)

(0,1,3,4)

(0,1,3,7)
(0,3,5,10)

N=1
N=2
N=3
N=4

Figure 7: Detection performance for the target �eld \topics" for

di�erent numbers of combined detectors N . Also shown are the

optimal indices of the detectors when N = 4. Integrating multiple

detectors provides a signi�cant performance improvement.

of conference names and the type of meeting.
As expected, there was a marked increase in false detec-

tion when the DBWorld �lters are used on the DIKU data
source (the error usually doubling from that expected). This
error shows the challenges inherent in developing systems
that can deal with the di�erent formats on the web, and of
obtaining representative data for web documents. The start
and end dates were sometimes confused (especially when one
of the two was not found). However, the results are adequate
for DEADLINER to be a useful tool. As it is used, we ex-
pect to receive additional labeled data from user feedback,
which will be used to improve the system.

5. RELATED AND FUTURE WORK
At this stage it is informative to compare DEADLINER

against two other niche search engines that perform exten-
sive �eld extraction, namely ResearchIndex [11] and CORA [14].
CORA uses Hidden Markov Models (HMMs) to extract

information in citations. ResearchIndex, in contrast, uses
hand-constructed algorithms and heuristics, where the most
uniform features are �rst parsed and syntactic relationships
are used to predict other �elds. Both these systems required
signi�cant e�ort to construct, which could prove problem-
atic when porting their architectures to new applications.
DEADLINER has a simpler and we believe more exible ap-
proach, which uses simple �lters to select appropriate text
blocks to narrow the text space and then applies simple
heuristics.

In our development of extractors using the DEADLINER
framework most of the �lters were simple regular expres-
sions. The option exists to use the wealth of existing ap-
proaches for learning regular expressions, simple rules or
HMMs automatically [15, 12, 5]. In particular, these ap-
proaches are especially useful in modeling structured doc-
uments when markup elements are present[1]. Some no-
table approaches have tried to automate extraction using
these techniques. For example, Hsu[8] trains a �nite state
tranducer (SOFTMEALY) for token extraction. Hsu uti-
lizes a heuristic to prevent non-determinism in the FST.
Contextual rules are produced by an induction algorithm.
The FST's obtained are applied to HTML pages. Similarly,
XWrap[13], is a wrapper construction system; XWrap trans-
forms HTML pages into XML. Rules are generated and ap-
plied to HTML, and interesting document regions are iden-
ti�ed via an interactive interface. The same is done for se-
mantic tokens, followed by a hierarchy determination for
the content, resulting in a context free grammar. One of
the goals of this system is minimal user interaction.
Stalker[16] is another algorithm that uses landmark au-

tomata to generate wrappers. Stalker is a greedy sequential
covering algorithm, and tries to form a landmark automaton
that accepts only true positives by iterating until it �nds a
perfect disjunct or runs out of training examples, where the
best disjunct is the one that covers the most positive exam-
ples. New disjuncts are added iteratively to cover uncovered
positive candidates.
While most of the methods above can exploit unlabeled

data (as long as the corpus is known to consist of relevant
pages), fully automated learning techniques require a large
amount of data. Especially the labeling of suÆcient data at
the target �eld level for these approaches to work is a sig-
ni�cant e�ort. In DEADLINER we focus on having human
designers develop simple rule expressions, and using a more
modest data set for performing the integration.

6. SUMMARY
We presented a new research tool, DEADLINER. DEAD-

LINER currently catalogs conference and workshop announce-
ments, extracting deadlines, topics and program commit-
tees. These elements already allow researchers or their agents
to �nd conferences covering relevant topics in �elds outside
their core disciplines, and monitor smaller workshops. We
hope that DEADLINER will ultimately be able to extract
from the web a wide range of academic convocation and
seminar related materials.
DEADLINER was constructed in a modular fashion and

can be recon�gured to create niche search engines of other
web communities. The architecture reects our belief that
within a domain (especially on the web), simple formatting

280

conventions, specialized dictionaries and key phrases contain
enough information to allow for �eld extraction without the
need for extensive natural language processing. Good per-
formance can be achieved with a reasonable amount of e�ort
by pre-screening documents using term frequency classi�ers,
and then integrating multiple simple detectors to tag text
sections for target �eld extraction. We presented a general
method for integrating a set of partial extraction solutions,
such as regular expressions, to perform the detection and
provide a con�dence estimate for the extraction. Further,
by combining multiple partial solutions a classi�er can be
constructed spanning an ROC curve. In this way, di�erent
operating points can be selected by the user or an agent in
an intuitive yet rigorous manner by varying a single mono-
tone parameter, as opposed to having the user manipulate
multiple poorly-behaved �lter parameters.

7. REFERENCES
[1] B. Adelberg. Nodose - a tool for semi-automatically

extracting structured and semistructured data from
text documents. In Proc. SIGMOD '98, 1998.

[2] F. Coetzee, E. Glover, S. Lawrence, and C. L. Giles.
Feature selection in web applications using ROC
inections and power set pruning. Technical Report
2000-028, NEC Research Institute, 2000.

[3] F. Coetzee, S. Lawrence, and C. L. Giles. Bayesian
classi�cation and feature selection from �nite data
sets. In Proceedings UAI2000, Stanford, CA, July
2000. UAI. Preprint available at
http://www.neci.nj.nec.com/homepages/coetzee/.

[4] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and
M. Gori. Focused crawling using context graphs. In
Proc. Very Large Data Bases 2000 (VLDB 2000),
September 2000. To appear.

[5] L. Firoiu, T. Oates, and P. Cohen. Learning regular
languages from positive evidence. In Twentieth
Annual Meeting of the Cognitive Science Society,
pages 350{355, 1998.

[6] E. J. Glover, S. Lawrence, W. P. Birmingham, and
C. L. Giles. Architecture of a metasearch engine that
supports user information needs. In Eighth
International Conference on Information and
Knowledge Management (CIKM'99), pages 210{216,
Kansas City, MO, November 1999. ACM Press.

[7] E. J. Glover, S. Lawrence, M. D. Gordon, W. P.
Birmingham, and C. L. Giles. Web search { your way.
Communications of the ACM, To appear.

[8] C. Hsu. Initial results on wrapping semistructured
web pages with �nite-state transducers and contextual
rules. In "Papers from the 1998 Workshop on AI and
Information Integration". AAAI Press, Madison, WI,
1998.

[9] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
Tenth European Conference on Machine Learning
ECML-98, pages 137{142, 1999.

[10] J. T.-Y. Kwok. Automated text categorization using
support vector machine. In Proceedings of the
International Conference on Neural Information
Processing (ICONIP), pages 347{351, Kitakyushu,
Japan, 1999.

[11] S. Lawrence, C. L. Giles, and K. Bollacker. Digital

libraries and autonomous citation indexing. IEEE
Computer, 32(6):67{71, 1999.

[12] T. R. Leek. Information extraction using hidden
Markov models. Master's thesis, UC San Diego, 1997.

[13] L. Liu, C. Pu, and W. Han. Xwrap: An xml-enabled
wrapper construction system for web information
sources. In Proc. International Conference on Data
Engineering (ICDE), pages 611{621, 2000.

[14] A. McCallum, K. Nigam, J. Rennie, and K. Seymore.
Building domain-speci�c search engines with machine
learning techniques. In Proc. AAAI-99 Spring
Symposium on Intelligent Agents in Cyberspace,
1999., 1999.

[15] D. Miller, T. Leek, and R. Schwartz. BBN at TREC-7:
Using hidden Markov models for information retrieval.
In The Seventh Text Retrieval Conference, TREC-7.
NIST Special Publications, 1999.

[16] I. Muslea, S. Minton, and C. Knoblock. Stalker:
Learning extraction rules for semistructured,
web-based information sources. In Proceedings of
AAAI-98 Workshop on AI and Information
Integration. AAAI Press, 1998.

[17] J. Platt. Fast training of support vector machines
using sequential minimal optimization. In
B. Scholkopf, C. Burges, and A. Smola, editors,
Advances in kernel methods - support vector learning.
MIT Press, 1998.

[18] J. Platt. Using sparseness and analytic QP to speed
training of support vector machines. In Advances in
Neural Information Processing Systems, 1999.

[19] H. L. Van Trees. Detection Estimation and
Modulation Theory, volume 1-3. Wiley and Sons,
1971.

[20] V. Vapnik. The Nature of Statistical Learning Theory.
Springer Verlag, New York, 1995.

281

