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Abstract We analyze a general model of multi-agent
communication in which all agents communicate
simultaneously to a message board. A genetic algorithm is
used to evolve multi-agent languages for the predator agents
in a version of the predator-prey pursuit problem. We show
that the resulting behavior of the communicating multi-agent
system is equivalent to that of a Mealy �nite state machine
whose states are determined by the agents’ usage of the
evolved language. Simulations show that the evolution of a
communication language improves the performance of the
predators. Increasing the language size (and thus increasing
the number of possible states in the Mealy machine) improves
the performance even further. Furthermore, the evolved
communicating predators perform signi�cantly better than all
previous work on similar prey. We introduce a method for
incrementally increasing the language size, which results in
an effective coarse-to-�ne search that signi�cantly reduces the
evolution time required to �nd a solution. We present some
observations on the effects of language size, experimental
setup, and prey dif�culty on the evolved Mealy machines. In
particular, we observe that the start state is often revisited,
and incrementally increasing the language size results in
smaller Mealy machines. Finally, a simple rule is derived that
provides a pessimistic estimate on the minimum language
size that should be used for any multi-agent problem.

1 Introduction

An important decision that needs to be made when designing a learning multi-agent
system is choosing the sensory information for the system. Providing too little infor-
mation will result in faster learning but will not allow the system to �nd an optimal
solution. On the other hand, providing too much information can signi�cantly increase
the learning time because of the larger search space, though the optimal solution be-
comes possible. Allowing agents to communicate and to learn what to communicate
can signi�cantly ease the burden on the designer. This article studies an ideal case in
which each agent has access to a small set of local information and through experience
learns to communicate only the additional information that is important.
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While many researchers have shown the emergence of bene�cial communication
in multi-agent systems, very few have looked into how communication affects the
behavior or representational power of the multi-agent system. The results of this article
contribute further to this area by looking at the relationship between the communication
behavior of a multi-agent system and the �nite state machine that completely describes
this behavior. With this knowledge we can better understand how communication
increases the representational power of a multi-agent system.

The role of communication in multi-agent systems remains one of the most impor-
tant open issues in multi-agent system design [4]. There have been several efforts to
standardize communication protocols and languages to facilitate coordination between
agents, although these efforts are still relatively immature. The knowledge query and
manipulation language (KQML) is a communication protocol for exchanging knowl-
edge and information. A description of KQML can be found in Labrou and Finin [12],
but KQML is still a work in progress and its semantics have not been completely de-
�ned. The knowledge interchange format (KIF) is a formal syntax for representing
knowledge. The KIF language is a pre�x version of �rst-order predicate calculus and
has been proposed as a standard for describing knowledge in expert systems and in-
telligent agents. Speech act theory [18] views human natural language as actions, such
as requests, replies, and commitments. Speech act theory standardizes the types of
communication acts available to agents. To a receiver agent understanding speech act
protocols, the message contained within the communication act may be nonstandard,
but there is no ambiguity as to the type of message sent.

Previous work has shown that bene�cial communication can emerge in a multi-agent
system. Ackley and Littman [1] have shown that agents can evolve to communicate al-
truistically in a track world even when doing so provides no immediate bene�t to
the individual. MacLennan and Burghardt [13] used genetic algorithms to evolve �nite
state machines that cooperate by communicating in a simple abstract world. Walker
and Wooldridge [22] studied the emergence of conventions in multi-agent systems as
a function of various hard-coded strategy-update functions, including update functions
in which agents communicate to exchange memories of observed strategies of other
agents. Luc Steels [19] showed that vocabulary can evolve through the principle of
self-organization. A set of agents create their own vocabulary in a random manner,
yet self-organization occurs because the agents are coupled in the sense that they must
conform to a common vocabulary to cooperate through communication. Saunders and
Pollack [16] allowed agents to communicate real-valued signals through continuous
communication channels. The signals decay over distance and an agent’s input on
a channel re�ects the summation of all the other agents’ signals along that channel.
Saunders and Pollack assigned these agents to a task in which they need to follow a
broken trail of food and showed that it was possible to evolve agents that communicate
the presence of food. Balch and Arkin [2] assigned robot agents to three tasks (forag-
ing, consuming, and grazing) and showed that communication signi�cantly improves
performance on tasks with little environmental communication, and that more complex
communication strategies provide little or no bene�t over low-level communication.

While many researchers have shown the emergence of bene�cial communication,
very few have analyzed the nature of the communication and how communication af-
fects the behavior or representational power of the multi-agent system. Gmytrasiewicz
and Durfee developed a “Recursive Modeling Method” to represent an agent’s state of
knowledge about the world and the other agents in the world [6]. Furthermore, Gmy-
trasiewicz, Durfee, and Rosenschein [7] used this framework to compute the expected
utility of various speech acts by looking at the transformation the speech act induces
on the agents’ state of knowledge. Hasida, Nagao, and Miyata [9] showed that with
certain assumptions, communication can be treated as an n-person game, and the op-
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timal encoding of content by messages is obtained as an equilibrium maximizing the
sum of the receiver’s and speaker’s expected utilities.

Finally, a description of some previous work on the predator-prey pursuit problem
is provided in the next section.

2 The Predator-Prey Problem

The predator-prey pursuit problem is used in this article because it is a general and well-
studied multi-agent problem that still has not been solved. The predator-prey pursuit
problem was introduced by Benda, Jagannathan, and Dodhiawalla [3]. It comprises four
predator agents whose goal is to capture a prey agent by surrounding it on four sides
in a grid-world. This problem has been used to study phenomena such as competitive
coevolution [10, 15, 17], multi-agent strategies, and multi-agent communication. Several
researchers have studied the latter two phenomena using the predator-prey pursuit
problem. Haynes and Sen [10] used genetic programming to evolve predator strategies
and showed that a linear prey (pick a random direction and continue in that direction
for the rest of the trial) was impossible to capture reliably in their experiments because
such prey avoids locality of movement. Korf [11] studied a version of the predator-
prey problem in which the predators were allowed to move diagonally as well as
orthogonally and the prey moved randomly. Tan [21] used reinforcement learning and
showed that cooperating agents that share sensations and learned policies with each
other signi�cantly outperform noncooperating agents in a version of the predator-prey
problem. Nishimura and Ikegami [14] observed random swarming and other collective
predator motions in a predator-prey game. Stephens and Merx [20] studied a simple
noncommunicating predator strategy in which predators move to the closest capture
position and showed that this strategy is not very successful because predators can block
each other by trying to move to the same capture position. Stephens and Merx also
present another strategy in which three predators transmit all their sensory information
to one central predator agent who decides where all predators should move. This
central single-agent strategy succeeded for 30 test cases, but perhaps the success rate
would be much lower if the agents were to move simultaneously instead of taking turns.

Our study uses an implementation that is probably more dif�cult for the predators
than those used in all previous work:

1. In our con�guration, all agents are allowed to move in only four orthogonal
directions. The predators cannot take shortcuts by moving diagonally to the prey,
as they do in [11].

2. All agents have the same speed. The predators do not move faster than the prey,
nor do they move more often than the prey, as they do in [10].

3. All agents move simultaneously. Because the agents do not take turns moving (e.g.
[20]) there is some uncertainty in anticipating the result of each move. In addition,
moving the agents concurrently introduces many potential con�icts; for example,
two or more agents may try to move to the same square.

4. The predators cannot see each other and do not know each other’s location. If this
type of information is essential to getting successful captures then the predators
will have to evolve a language that can represent such information.

The world is a two-dimensional torus discretized into a 30 £30 grid. Since the world
is toroidal, if an agent runs off the left edge of the grid it will reappear on the right edge
of the grid, and a similar behavior would be observed vertically. No two agents are
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Figure 1. Multi-agent communicationas a single � nite state machine (FSM). The length of the communicationstrings
is represented by l.

allowed to occupy the same cell at the same time. Agents cannot move through each
other. If two or more agents try to move to the same square they are all blocked and
remain in their current positions. At the beginning of each scenario the predators and
prey are randomly placed on different squares. Each scenario continues until either the
prey is captured, or until 5,000 time steps have occurred without a capture.

Two prey strategies are used in the simulations. The random prey chooses its next
action at each time step from the set N, S, E, W using a uniform random distribution.
The linear prey picks a random direction at the beginning of a trial and continues in
that direction for the duration of the scenario. It has been shown that the linear prey
can be a dif�cult prey to capture [10, 19] because it does not stay localized in an area.
In our simulations this is an even more dif�cult prey to capture because the prey and
predators move at the same speed.

3 Communication

We studied a simple framework in which all predator agents communicate simulta-
neously to a message board (see Figure 1). At every iteration, each predator agent
speaks a string of symbols from a binary alphabet f0, 1g. The communicated symbols
are placed on the message board. Each agent then reads all the strings communicated
by all the predator agents and determines the next move and what to say next. The
strings are restricted to have equal length l . We vary the length l of the strings and
study the effect on performance.

3.1 Equivalence to a Finite State Machine
This type of communication can be represented as shown in Figure 1, where fAmg is
the set of homogenous predator agents, fOmg is the set of actions of the predators, and
fImng is the set of environmental inputs, where n is the number of inputs and m is the
number of communicating agents. The message board can be interpreted as a set of
state nodes.
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The entire set of agents can be viewed as one �nite state machine (FSM) with the
set of possible states speci�ed by the state nodes fSml g. The whole multi-agent system
is equivalent to a �nite state automaton with output, otherwise known as a �nite state
transducer. One type of �nite state transducer is the Mealy �nite state machine, in which
the output depends on both the state of the machine and its inputs. A Mealy machine
can be characterized by a quintuple M D (S, Q , Z , d, l), where S is a �nite nonempty
set of input symbols, Q is a �nite nonempty set of states, Z is a �nite nonempty set of
output symbols, d is a “next-state” function that maps Q £ S ! Q , and l is an output
function that maps Q £ S ! Z .

It is easy to show that the multi-agent system is a Mealy machine by describing the
multi-agent system in terms of the quintuple M . The input set S is obtained from the set
fI00I01 ¢ ¢ ¢ I0nI10I11 ¢ ¢ ¢ Imng of all possible concatenated sensor readings for the predator
agents (for all possible values of I ). A description of the sensor readings is provided
later in this article. The states Q are represented by concatenation of all symbols in the
message board. Since the communication strings comprise binary symbols f0, 1g, the
maximum number of states Nstates in the Mealy machine is therefore determined by the
number of communicating agents m and by the length l of the communication strings:
Nstates D 2lm . The output set Z is obtained from the set fO00O01 ¢ ¢ ¢ O0pO10O11 ¢ ¢ ¢ Ompg
of all possible concatenated actions for all the communicating agents, where p is the
number of bits required to encode the possible actions for each agent (for all possible
values of O). In the general case where the actions do not have to be encoded as binary
bits, the output set is simply the set fO0O1 ¢ ¢ ¢ Omg of all possible concatenated actions
for the m communicating agents. The next state function d and output function l are
determined by the agents’ action and communication policies. The policies themselves
may be FSMs or something with even more representational power; in such a case the
multi-agent FSM is a hierarchical FSM.

3.2 Communication Can Help in Partially Observable Environments
From Figure 1 it is clear that communication allows the agents to use state information.
This state information is contributed by all communicating agents and represents the
state of the entire multi-agent system.

Although each individual agent may maintain its own state information, such in-
formation will be limited by the available sensors of the agent. When an agent’s
next optimal action depends on information that is hidden from an agent’s sensors,
we say that the agent suffers from the hidden state problem. Figure 2 shows an ex-
ample of a typical hidden state problem that is very common in the predator-prey
simulations reported in this article. In this �gure, predator 1 sees the same sensory
information for two different scenarios because predators cannot sense each other di-
rectly. In scenario a, predator 1 attempts to move south but is blocked by predator 0
in its path, while in scenario b predator 1 is attempting to move south and is not
blocked.

Communication allows agents to “tell” each other environmental information that
may have been observable only to a subset of the agents. Obviously, communication
will be of little use in this respect in the limit when the same set of information is
observable to all agents. The message board can be viewed as part of the environment.
With this equivalent interpretation, the message board disambiguates the environmental
states observed by each agent by providing information that may have been hidden
otherwise—assuming the agents are able to communicate effectively.

It is very rare for all agents to have access to the same amount of information. This is
because an individual agent will usually have its own internal state that is not observable
by other agents. If an agent’s state helps determine its behavior, communication may
be instrumental in allowing the agents to converge on an optimal plan of action. Thus,
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Figure 2. An example hidden state problem. Predator 1 sees the same sensory information for both scenarios a
and b, but in fact scenario b is very different from a: In scenario a predator 1 is blocked, while in scenario b it is not.
This hidden state problem is due to the fact that the predators cannot sense each other’s locations.

even if all agents have access to all possible environmental information, communication
may still be helpful by allowing agents to communicate their internal state information.

4 Experimental Setup

A genetic algorithm is used to evolve predators that communicate. A set of experiments
is performed with communication strings of varying length l . As the length l increases,
the number of strings that are available for communicative acts increases exponentially.

In the sections that follow, genetic algorithm (GA) predators are labeled as GaPred-
ator(l), where l is the length of the communication strings. A communication string of
length zero means the predators are not communicating.

The performances of grown predators (see Section 4.2 below) are also compared.
These predators are labeled as GaPredator(l0 ! l1), where l0 is the string length before
the agent is grown, and l1 is the length it was grown to.

Separate populations of GaPredator(0), GaPredator(1), GaPredator(2), GaPredator
(0 ! 1), and GaPredator(1 ! 2) predators are matched against the random and linear
preys. The initial GaPredator(0 ! 1) population is grown from the GaPredator(0) pop-
ulation with the best average �tness, and similarly the initial GaPredator(1 ! 2) pop-
ulation is grown from the GaPredator(0 ! 1) population with the best average �tness.

4.1 Encoding Predator Strategies
The behavior of each evolved predator is represented by a binary chromosome string.
The length c of the chromosome string is a function of the number of possible states
Nstates observable by the predator based on its sensory information, and the number of
actions bactions.

The sensory information available to the predators comprises the range and bearing
of the prey, and the contents of the message board. The range (measured in terms of
Manhattan distance) and bearing are discretized into Nrange D 4 and Nbearing D 8 sectors,
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Table 1. Discretization of predator-prey range and bearing. Range is measured in Manhattan distance.

Distance of prey Bearing b of prey

from predator (# of cells) Range sector from predator (radians) Bearing sector

0 0 ¡ p
8

< b · p
8

0

1 1 p
8 < b · 3p

8 1

2 2 3p
8

< b · 5p
8

2

3C 3 5p
8 < b · 7p

8 3
7p
8

< b · 9p
8

4
9p
8 < b · 11p

8 5
11p

8
< b · 13p

8
6

13p
8 < b · 15p

8 7

as detailed in Table 1. The number of symbols on the message board is ml , where
m is the number of predator agents. The message board can have Nmessages D 2ml

possible messages. The total number of states that can be sensed by a predator is
therefore Nstates D NrangeNbearingNmessages. The actions comprise the moves fN , S , E , W g,
and speak a string of length l at each iteration. The number of binary bits required
to represent the four moves is bmoves D 2. Thus, the total number of action bits is
bactions D bmoves C l . We arrive at the following equation for the chromosome length
cml of a GA predator that communicates with strings of length l in a team of m predators:

cml D bactionsNstates

cml D (bmoves C l )NrangeNbearing2ml (1)

so the chromosome length increases exponentially with communication string length l
and number of agents m.

4.2 Growing GA Predators—Coarse-to-Fine Search
To improve ef�ciency, it would be useful to grow the predators. Growing means taking
a population of predators that have already evolved a language from a set of possible
strings and evolving them further after increasing the set of possible strings they are
allowed to communicate. This re-uses the knowledge acquired by predators that were
limited to a smaller language. This is effectively a coarse-to-�ne search; as we increase
the search space by increasing the number of possible strings, the agents can re�ne the
language and communicate other useful, but possibly less critical, information.

By growing the language in these experiments we are making it adaptive. Luc Steels
[19] de�nes an adaptive language as one that “expands or changes in order to cope
with new meanings that have to be expressed.”

When a population of GA predators with chromosome length cml is grown to a
length of cm(l C1), each new chromosome is encoded such that the behavior of the new
predator is initially identical to that of the chromosome it was grown from. The portions
of the larger chromosome that are new are not visited initially because the predator
is making exactly the same decisions as before and will therefore see the same set of
sensory states. During the evolutionary process new sensory states will be visited and
the agent will evolve accordingly.

In addition, the population size of the grown cm(l C1) predators is always twice the
population size of the cml predators they were grown from. Half of the population
of cm(l C1) predators are grown from the cml predators; the other half are generated
randomly. In this manner the grown predators do not rely solely on mutation for
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introducing new genetic material to the genes that were copied from the predators
with chromosome length cml . They can obtain new genetic material through crossover
with the randomly generated individuals.

4.3 Evaluating the Fitness of Evolved Predators
The �tness of each evolved strategy is determined by testing it on 100 randomly gen-
erated scenarios with different starting locations for the predator and prey agents. The
maximum number of cycles per scenario is 5,000, after which the predators are con-
sidered to have failed. Since the initial population is randomly generated, it is very
unlikely that the �rst few generations will be able to capture the prey. We attempt to
speed up the evolution of �t strategies by rewarding those strategies that at least stay
near the prey and are able to block the prey’s path. The �tness fi of individual i is
computed at the end of each generation as follows, where Nmax D 5000 is the maxi-
mum number of cycles per scenario, T D 100 is the total number of scenarios for each
individual, and nc is the number of captures:

� If nc D 0, fi D 0.4
davg C0.6 nb

NmaxT

where davg is the average distance of all four predators

from the prey during the scenarios, and nb is the cumulative number of cycles that
the prey’s movement was blocked by an adjacent predator during T scenarios. The
�tness of noncapture strategies can never be greater than 1.

� If 0 < nc < T , fi D nc .

� If nc D T , fi D T C 10000T
T

jD0

tj

, where tj is the number of cycles required to capture the

prey at scenario j .

4.4 GA Setup
The following GA parameters were found experimentally to be most effective. We
use two-point crossover with a crossover probability of 0.4. The idea behind multi-
point crossover is that parts of the chromosome that contribute to the �t behavior
of an individual may not be in adjacent substrings. Also, the disruptive nature of
multi-point crossover may result in a more robust search by encouraging exploration
of the search space rather than early convergence to highly �t individuals. For a
discussion of two-point crossover and generalized multi-point crossover schemes see
[5]. A tournament selection scheme [8] with a tournament size Tour of 5 is used to select
the parents at each generation. In Tournament selection, Tour individuals are chosen
randomly from the population and the best individual from this group is selected as
a parent. This is repeated until enough parents have been chosen to produce the
required number of offsprings for the next generation. The larger the tournament
size, the greater the selection pressure, which is the probability of the best individual
being selected compared to the average probability of selection of all individuals. The
population size p and mutation rate depend on the length of the communication string
because the search space increases exponentially with the communication string length.
The larger search space translates into longer chromosome lengths. As a general rule,
longer chromosome lengths warrant a larger population size and smaller mutation rate.
The population sizes and mutation rates used in the experiments are listed in Table 2.

Ten trials are performed, with the population initialized randomly at the beginning
of each trial. The following is a brief description of the algorithm:

1. Repeat the following for 10 trials on selected prey:

(a) Randomly generate a population of p individuals.
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Table 2. Population size and mutation rate GA parameters used in the simulations.

Predator Population size Mutation rate

GaPredator(0) 100 0.01
GaPredator(0 ! 1) 200 0.001

GaPredator(1) 200 0.001
GaPredator(1 ! 2) 800 0.0005
GaPredator(2) 800 0.0005

(b) Repeat until there is no improvement after 200 generations:

i. Simulate each predator strategy on 100 scenarios and evaluate its �tness
based on the performance on those scenarios.

ii. Select p individuals from the current population using tournament
selection, pair them up, and create a new population by using two-point
crossover with mutation.

(c) The best strategy found over all generations is used as the solution of this
trial. The �tness of this strategy is then recomputed by testing on 1,000 new
randomly generated scenarios.

2. The strategy that performed best over all 10 trials is used as the solution.

5 Results

Figure 3 shows the best average capture times (over 1,000 randomly generated sce-
narios) and the cumulative number of evolutionary generations that were needed to
achieve such capture times. If G (l ) is the number of generations that a GaPredator(l)
population was evolved, and G (l0 ! l1) is the number of generations that a GaPred-
ator(l0 ! l1) population was further evolved after it was grown from l0 to l1, then
the cumulative generations for the best GaPredator(0 ! 1) and GaPredator(1 ! 2)
populations are computed as follows:

Gcumulative(0 ! 1) D G (0) C G (0 ! 1)

Gcumulative(1 ! 2) D Gcumulative(0 ! 1) C G (1 ! 2)

Figure 3. Best capture times and the corresponding number of evolutionary generations required to evolve the
communicating predators against random and linear prey, at communication string lengths 0, 1, and 2.
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Figure 4. Finite state machine of noncommunicating GA predators. All the links have been combined into one
meta-link for simplicity. In other words, when the predators are not communicating they act like an FSM with one
state and many links, one link for each possible input combination.

Below is a summary of the performance and convergence results:

� As the length of the communication string increases, the capture time decreases.
However, the best capture performance of GaPredator(1) against the random prey
is comparable to the best performance of GaPredator(2) and GaPredator(1 ! 2),
which indicates that a communication string of length 1 was suf�cient against the
random prey.

� The evolutionary generations required increases with the length of the
communication string.

� The capture performance of grown predators is comparable to the performance of
the equivalent nongrown predators but requires signi�cantly less evolution time.
Thus, incrementally increasing the language size is an effective coarse-to-�ne
method that reduces the search time.

� The evolved communicating predators perform better than all previously published
work to our knowledge. The experimental setup most similar to our work is
perhaps that of Haynes and Sen [10], although their setup makes the predators’ job
easier because they are allowed to move more frequently than the prey. Haynes
and Sen and others [11] working on similar prey report results as a percentage of
trials that lead to capture, whereas the results reported here show a 100% capture
rate when the predators are allowed to communicate.

5.1 Analysis of Evolved FSMs and Communication
This section describes and analyzes the differences in the evolved FSMs as a result of
the communication language size. The Mealy machines were obtained by “listening”
to the predators talking during actual trials, as opposed to analyzing the predators’ GA
string to determine what they would say for each possible sensory permutation. This
way we only account for states and links on the multi-agent Mealy machine that are
ever visited and ignore states and links that do not contribute to the behavior of the
predators because they are never visited anyway.

After obtaining the communication activity of the predators, the states of the Mealy
machine are constructed by concatenating the words spoken by all predators on the
message board. A different multi-agent state is associated with each unique concatena-
tion. The links represent transitions between multi-agent states (i.e., transitions in the
content of the message board) at each time step as a result of the inputs sensed from
the environment.

Figures 4–7 show the best evolved Mealy machines for noncommunicating and com-
municating predators that were evolved against the linear prey. The Mealy machines
are depicted using what we call scaled �nite state diagrams (SFSD). SFSDs provide more
information than standard �nite state diagrams by representing the relative importance
of links and nodes in a visual manner. A scaled �nite state diagram is described as
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Figure 5. Finite state machine of best communicatingGAPredator(1) evolved against the linear prey. All 16 possible
states are used. The FSM on the right is the same machine as on the left, except the machine on the right is
represented as a scaled �nite state diagram (SFSD). States 0, 2, 4, 5, 6, and 8 are more signi� cant than the other
states.

follows:

� Links are combined to meta-links. A meta-link is an aggregate of all links that
connect the same two nodes together, irrespective of their input/output pairs. This
simpli�es the �gures because otherwise the individual links are so numerous that
they would completely �ll all the space. Also, note that the links are directional,
and the end with the arrow points to the next state.

� The thickness of a meta-link indicates the number of individual links that were
combined to form the meta-link. A thick meta-link means that many individual
links with different input/output pairs were combined to form that meta-link.

� The size of a node indicates its attractiveness and signi�cance. This is measured by
the number of incoming links that are connected to that node. A large state node
indicates that many environmental input combinations from various states would
move the multi-agent system to this state.

Each node is labeled by a number, which is computed by concatenating all the
communicated words on the message board and using the language size as the base
power. The start node is labeled “0” because at the start of each scenario the message
board is initialized to all zeroes.

Observation of the evolved Mealy machines indicate the following:

� The start state is always very signi�cant in the evolved Mealy machines.

� Growing a language results in a Mealy machine with fewer states than an evolved
language that was not grown. Compare Figures 6 and 7 and see Table 3, which
shows the average number of states in the best Mealy machines over 10 trials as a
function of communication size. For example, the average number of states in the
evolved GaPredator(2) machines was 252, while for the grown predators
GaPredator(1 ! 2) the average was only 87. Intuitively this makes sense: The
grown FSMs were forced to make do initially with fewer possible states, and as
new states became available they were added only when doing so improved
performance, or at least did not detract from the performance.
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Figure 6. Finite state machine of best communicatingGAPredator(2) evolved against the linear prey. All 256 possible
states are used.

Table 3. Average number of states in best predators’ multi-agent Mealy machine over 10 trials as a function of prey
and communication size.

Predator Prey

Random Linear

GaPredator(0) 0 0
GaPredator(0 ! 1) 8 16
GaPredator(1) 12 16
GaPredator(1 ! 2) 8 87
GaPredator(2) 12 252

� The size of the Mealy machine appears to increase with the dif�culty of the
problem. See Table 3. For example, the Mealy machines evolved against the
random prey are smaller than the Mealy machines evolved against the more
dif�cult linear prey. Also, note that the Mealy machine for GaPredator(1 ! 2) (see
Figure 7) only uses 87 out of 256 possible states, which indicates that increasing
the language size (and thus the number of possible states) would not improve
results; it would only increase the number of required evolutionary generations
unnecessarily.

5.2 Evolved Languages
Table 4 shows an excerpt of the language evolved by the best GaPredator(0 ! 1)
agents. This excerpt was obtained by clustering the observed communication activity
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Figure 7. Finite state machine of best communicating GAPredator(1 ! 2) evolved against the linear prey. Only 87
out of 256 possible states are used, but the start state (state 0) is much more signi� cant than all other states.

Table 4. Excerpt of the language evolved by best GaPredator(0 ! 1) agents.

Input (Range/Bearing) Message board Say Move

2/2 0 0 0 0 0 North

2/3 0 0 1 0 0 West
2/1 0 0 0 1 0 East
1/6 1 0 0 1 1 South
1/1 1 1 1 1 1 South
1/6 0 1 1 1 1 West

using the minimal spanning tree algorithm and displaying some of the larger clusters.
As an example, the �rst line is interpreted as follows: “If the prey is to the far north
of me (range of 2, bearing 2) and the message board consists of the symbols (0,0,0,0),
speak the symbol “0” and move north.”

The minimal spanning tree (MST) algorithm is a hierarchical clustering method. Ini-
tially, each distinct communication instance is assigned a separate cluster. A communi-
cation instance consists of the following information: the agent’s sensory information,
the contents of the message board, what the agent decides to say, and how the agent
decides to move. The MST algorithm proceeds iteratively, at each stage joining the two
most similar clusters until a stopping criteria (usually until there is only one cluster left).
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The similarity between clusters was measured using a distance metric that weighted the
agents’ move and sensor information more than it weighted the contents of the message
board.

An important observation from the evolved languages is that it is very dif�cult, if
not impossible, to explain the evolved languages. Looking at Table 4, one would be
hard-pressed to say, for example, what the symbol “0” means to the predators since
there does not appear to be a pattern to its usage. However, the evolved languages
are obviously very suitable because they allow the predators to outperform all previous
work on similar prey. We thus conclude that allowing the agents to evolve their own
communication language is very useful, since it would have been very dif�cult for a
human designer to construct a similar language that can perform as well.

Also, the evolved languages are tightly coupled with the learning problem and cannot
be re-used on a different problem. The languages are integrated with the strategies and
available actions of the agents in their environment. Therefore, the portability of the
evolved languages is dependent on the portability of the evolved multi-agent strategies.

5.3 Semantic Density
Let us de�ne the semantic density of a language as the average number of meanings
assigned to each word of the language. The semantic density d can be computed as

d D
c

k
,

where c is the total number of meanings represented by the language, and k is the
number of words in the language.

We can compute an upper bound c U on the number of possible useful meanings that
the predator agents can communicate. We make the following simplifying assumption:
The space of useful meanings that a predator can possibly communicate includes only
the agent’s sensory information and its next move. This assumption is justi�ed in our
simulations because the agents do not have any internal state information that needs
to be communicated (our predators do not maintain any internal state), and the agents’
plan of action applies only to the current time step. Accounting for the environmental
information observable for each agent and the four actions (N,S,E,W) that an agent
can take, we get the following equation for the upper bound on the number of useful
meanings:

c U D 4Nrange N bearing D 128,

where Nrange D 4 is the number of discrete ranges from the prey, and Nbearing D 8 is
the number of discrete bearings to the prey. c U represents the maximum number of
unique meanings that a predator agent can possibly communicate regarding its sensory
information and its next action.

Assuming that the agents use all the words available to them, an upper bound on
the semantic density of the evolved languages in our simulations is simply

dU D
c U

k
D

128

2l
D 2(7¡l ),

where l is the length of the binary communication string. Effectively,dU is the maximum
average number of meanings that need to be assigned to each word to allow for an
optimal multi-agent strategy that has access to all available local information.
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Table 5. The theoretical upper bounddU on the meaning density and the average observed upper boundd¤
U for the

best predators. N¤ is the average number of states in the evolved multi-agent Mealy machines, shown here again for
convenience.

Predator dU d¤
U against linear prey d¤

U against random prey N ¤

GaPredator(0) 128 1

GaPredator(0 ! 1) 64 38 10 16
GaPredator(1) 64 38.5 16 16
GaPredator(1 ! 2) 32 19.75 10 87
GaPredator(2) 32 20 20 252

However, a tighter bound can be obtained by observing traces of the sensory input
and movements of all the predators during actual runs. Basically, we observe that
in all runs the number of words used is still k D 2l ; however, the number of possible
meanings c U is less than the limit 4NrangeNbearing because not all combinations of sensory
input and actions are experienced by the agents. In other words, the observed upper
bound on the density d¤

U appears to be much less than the theoretical upper bound dU.
This is illustrated in Table 5, which shows the theoretical upper bound density dU and
the average observed d¤

U for the best predators at each communication string length.
The interpretation of d¤

U is slightly different from the interpretation of dU: whereas dU is
an upper bound that allows for an optimal strategy using all available local information,
d¤

U is an upper bound that allows for the best evolved strategy observed, which may or
may not be the optimal strategy.

Table 5 indicates that the theoretical upper bound on semantic density is rather large,
and it is perhaps unrealistic to expect that a word can have so many meanings in an
evolved language. Determining the actual semantic density is a dif�cult data-mining
problem and will not be presented in this article. One would need �rst to mine for
semantics from the data consisting of the sensory logs of each agent and their actions
recorded during all runs. Instead, we make the following observations in support of
the notion that a relatively high semantic density may in fact be realistic:

� First, it should be noted that the observed upper bounds on semantic density are
much less than the theoretical upper bounds, as shown in Table 5.

� There does appear to be heavy re-use of symbols (or words) in the evolved
languages. A symbol is used differently depending on the state of the message
board. For example, the symbol “1” is used differently when the state of the
message board is 1001 versus 0111 in Table 4. Thus the evolved languages are
compact and are able to represent more concepts than the 2l possible symbols
available to each agent.

� This re-use of words is also observed in natural languages. It is analogous to
contexts. For example, in the English language the word “drive” can mean a
compulsion to do something, or a device for storing information, or to guide or
control (e.g., “drive a vehicle”), depending on the context. In fact, the word “drive”
can be a noun or a verb, and according to an on-line dictionary [23], the verb form
can have at least 12 meanings.

� In the communication framework studied in this article, the content of the message
board, or equivalently the state of the Mealy machine, determines the context for
the spoken symbols. Therefore, the maximum number of contexts per word is
equivalent to the number of states in the evolved Mealy machine, and this places a
structural upper bound on the semantic density that can be represented by the
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multi-agent system. Table 5 shows that for most cases the evolved Mealy machines
can more than accommodate the upper bounds on semantic density because the
average number of states in the Mealy machines is greater than the semantic
density upper bounds. In fact, the cases in which the observed upper bound on
semantic density d¤

U is greater than the number of states are exactly the cases in
which a larger language improved performance in our simulations. For example,
d¤

U against the linear prey with communication strings of length 1 is greater than the
number of possible states, and in our simulations increasing the communication
length to 2 improved capture performance.

� Thus, one pessimistic estimate for the minimum communication string length l is
the following rule:

Increase l until Nstates ¸ dU,

where Nstates D 2ml is the number of possible states (semantic contexts) in the
Mealy machine that represents the multi-agent strategy, and m is the number of
communicating agents. The value of dU will be different for each problem, and
indeed it may be dif�cult to estimate in problems in which one does not know the
space of local information available to each participating agent or when the agents
maintain internal state information. The number Nstates can easily be rewritten as a
function of the number of words W in the language. For example, in our
experiments W D 2l , and N can be expressed as Nstates D W m. Thus, our simple
rule can be rewritten as

Increase the number of words in the language until N ¸ dU.

6 Conclusions

A multi-agent system in which all the agents communicate simultaneously is equivalent
to a Mealy machine whose states are determined by the concatenation of the strings in
the agents’ communication language. Thus, evolving a language for this type of com-
municating multi-agent system is equivalent to evolving a �nite state machine to solve
the problem tackled by the multi-agent system. The simulations show that a genetic
algorithm can evolve communicating predators that outperform the best evolved non-
communicating predators, and that increasing the language size improves performance.
A method is introduced for incrementally increasing the language size that results in
a coarse-to-�ne search that signi�cantly reduces the time required to �nd a solution.
Furthermore, a simple rule is derived for estimating the minimum language size that
should be used for any multi-agent problem.

Future work could focus on the semantics of the evolved languages. In addition,
more elaborate ways to generate an adaptive language can be explored. Finally, it
would be an important step to extend the analysis introduced here to other forms of
multi-agent communication structures, such as a system of agents that communicate
asynchronously, or only to their nearest neighbors.
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