
48 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 49 more queue: www.acmqueue.com

SearchFO
CU

S

Big or small,
proprietary or
open source,

Web or intranet,
it’s a tough job.

48 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 49 more queue: www.acmqueue.com

There must be 4,000 programmers typing away in their
basements trying to build the next “world’s most scal-
able” search engine. It has been done only a few times. It
has never been done by a big group; always one to four
people did the core work, and the big team came on to
build the elaborations and the production infrastructure.
Why is it so hard? We are going to delve a bit into the
various issues to consider when writing a search engine.
This article is aimed at those individuals or small groups
that are considering this endeavor for their Web site or
intranet. It is fun, but a word of caution: not only is it
difficult, but you need two commodities in short sup-
ply—time and patience.

SUPER-SHORT SEARCH ENGINE OVERVIEW
OK, let’s do it. Let’s write a search engine.

A crawler gets the Web pages off of that pesky Web
and onto your beautiful disks. You’ll need lots of disks.

Then you need to index these pages—say which page

has which words. This will tell you that Janet Jackson
was found on the www.superbowl.com page. Usually,
indexing happens locally on the disks where your crawler
dumped these Web pages. Hey, why move them?

In most architectures, now you need to merge these
indices so that you have one place to go to in order to
find all the pages mentioning Janet Jackson’s Super Bowl
performance. When you merge all these small indices,
the final index will be so big that it won’t fit on one
machine. This means that you’ll have to merge these
small indices in such a way as to split the final big index
across many machines.

Now you are ready to serve queries? Wrong. Now you
build the runtime system that gets users’ queries, retrieves
the results out of the index from the right machine(s),
and re-ranks them according to the query. All this, while
people are drumming their fingers on their desks wait-
ing—hopefully, lots of people and, hopefully, not enough
time for much drumming.

Search Engine

ANNA PATTERSON, STANFORD UNIVERSITY

is hard

Why writing your own

50 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 51 more queue: www.acmqueue.com

RESOURCES
People talk a lot about the thousands of machines needed
to build a search engine. This sounds very scary. All
search engines, however, started with a lot more thought
and design than they did machines. So let’s see what is
fact and what is fallacy.
Bandwidth. Legend has it that venture capitalists used
to buy hard disks for young entrepreneurs to prove that
their ideas would work. Now disks are cheap—but the
new bottleneck is bandwidth. Usually that takes capital.
You need this bandwidth to get the pages from the Web
in the first place. The “CPU-ness” or memory of the
machines that you use doesn’t really matter. All that mat-
ters is how much bandwidth you have (can afford) and
can use because crawling is not a CPU endeavor—crawl-
ing is a bandwidth monster.

There are lots of ways around this issue, but the most
useful is to realize that you won’t get the indexer and the
servers working right (if at all) for six months, anyway, so
crawl slowly and index what you have as you go along.
Bugs will show up in the later phases, so the lack of pages
won’t be the thing holding you up; instead, it’ll be those
nasty bugs slowing you down. So crawl continuously at
whatever rate you can afford (down to 1-megabyte DSL),
and the rest will take care of itself. By the time you have a
search engine that works on the pages you have and can
keep up with your super-slow crawl, perhaps you’ll be in a
position to afford big bandwidth by raising capital.

Big bandwidth is usually found at a collocation facility
(or colo). I want to warn against this if you are a super-
small company. Get the bandwidth to the office! If you
have a small team, the last thing you can afford is people
on the highway all day long running to the colo. This is
another big reason that I recommend small bandwidth
for the development phase. You can’t afford the loss of
a person for half a day to go exchange a disk. Another
reason to avoid a colo is that it’s hugely expensive. Just
throw the stack of machines under your desk and con-
sider it a space heater.
CPU Issues. People argue all day about which types of
CPUs to use for which phase of a search engine. Most
people argue that the ideal is to get stupid CPUs for crawl-

ing and fast CPUs for indexing and serving. Why is this?
You don’t need a lot of thinking to do crawling; you

need bandwidth, so any old CPU will do. For indexing,
you are doing a lot of I/O and a lot of thinking/analyzing
the page, so the bigger the better. At serve time, you’re
going to need to re-rank the URLs in response to a query,
so again, the bigger the better.

Since you’re writing the search engine yourself,
however, it has to be one size fits all. Most indexing
algorithms worth their salt will probably peg any CPU. So
the same advice goes: it doesn’t matter, get what you can
afford; the bugs you write will slow you down more than
the cheap CPUs. If you have to look around your local
Fry’s or CompUSA for CPUs, however, more on-board
cache will be key for the indexing algorithms because
more of the page will be kept onboard.

If your algorithm doesn’t peg a Pentium 4, then
rethink the game plan of building a better search engine,
because yours will not be the one that wins.
Disk Issues. SCSI is faster, but IDE is bigger (and cheaper).
If you are writing a search engine yourself, use IDE. This
will save money in many ways. You get bigger disks, so
one machine can hold 1 terabyte for IDE disks easily, but
this just isn’t the case for SCSI. Secondly, SCSI disks are a
lot more expensive—also not a good idea for four guys in
the garage.

At runtime, you’ll be disk-bound. You have two tasks:
get the index entries off disk and re-rank these for rel-
evancy. For getting the index entries off disk, you might
think the faster the disk the better. But users will not see
the performance increase you get from SCSI in the disk
transfer rate, because it takes a lot of practice with the
search engine end game (the runtime architecture) for
this difference to be an issue. Instead, use parallelism and
multiple cheap disks to achieve this speed-up. This will
still save you money in buying fewer machines and give
you practice with the key tool of search engine architec-
tures—parallelism.

Ah, but SCSIs are hot-swappable, you say. Get over it.
Remember, no colo. You cannot afford it and you don’t
want it. So if you’re worried about disk failures since you
picked your disks out of a Dumpster, then my advice is

SearchFO
CU

S

Search Engine
is hard

Why writing your own

50 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 51 more queue: www.acmqueue.com

don’t screw the covers onto your machines and don’t use
four screws per disk. This makes IDEs pretty easy to repair,
but certainly not hot-swappable.
Storing Files. Old-fashioned file systems used to have a
limit on file size—some of them had a 2-gigabyte limit.
These file systems also used to have an issue with storing
lots and lots of files in one directory. For these reasons,
the prevailing wisdom has been to crawl a bunch of URLs
and stuff them into one big file (up to the limit) and then
start on the next file. Even though current operating sys-
tems don’t have the same number-of-file restrictions they
used to, putting lots of pages in one file is still a good
idea. Stuff them in—up to the limit of good performance
of your operating system.

Why? When indexing, or laying down the crawl, a big
continuous file saves a whole lot of disk seeks—the fewer
files the better. Disk seeks will kill you even if your disk
transfer rate is high. You cannot afford the time to seek
to a file to process a Web page. Web pages right now aver-
age around 10 kilobytes per page (I’m such an oldtimer,
I remember when they were 2 KB, and others remember
when they were 1 KB). You don’t want to seek to a disk
to read 10 KB when we are talking about millions, if not
billions, of Web pages. Essentially, this will almost double
your processing time, as well as fry your disks from the
Dumpster.

While you might think that it is conceptually cleaner
to store one Web page per one file, this will become a
management pain—and it will also slow down your
processing.
Networking. With real estate they say “location, loca-
tion, location.” Well, a good search engine rule that I’ve
learned the hard way is: Don’t use NFS. Don’t use NFS.
Don’t use NFS (network file system). NFS might seem like
a great idea for an index that won’t fit on one machine
(and yours probably won’t). It seems like the perfect solu-
tion. If you put the index on multiple machines, then
NFS will make it seem like your index is on one machine.
Sound good? That way you don’t have to do or learn any
networking yourself. Wrong! You’ll have to do real distrib-
uted systems work for the serving architecture, anyway, so
get it over with and do the work now.

Current NFS implementations can’t stand the punish-
ment inflicted by the runtime system, or the indexing
phase without using “spendy” specialized hardware.

In the indexing phase, you will get corrupted indices
as you try to do lots of networked writes. Ask the con-
tributors to NFS in Linux and they will tell you the same:
not ready for serious punishment.

Next, using NFS in the runtime system, you will get
machines that don’t have fault tolerance. If one of the
NFS’d machines is sick, then the rest just seize. Not good.

SOFTWARE TO WRITE/GET
Crawler. If you don’t use an open source crawler, my
advice is a super-simple multistep crawler. This is very
important advice that will cut months off your develop-
ment time, so if you ignore everything else, don’t ignore
this.

If you want to build a crawler yourself, then first get
a list of URLs that you want to seed your crawler with
(these need to be good starting points for exploring the
Web—dmoz, Yahoo...). Then write any simple program
that will get them. For instance, (dolist (y list of URLs) GET
y) is essentially all you need.

When you get these pages, analyze the outgoing links
in the pages to create a new list for your simple crawler
and go get those. What about duplicates, you ask? Sort |
uniq on Linux will do this for you; otherwise, I think you
can handle it. This takes care of duplicate URLs, but what
about duplicate content? My advice: find those at serve
time.

The really hard problem with crawlers is to perform

If you have a small team,
the last thing you can afford
is people on the highway
all day long running to the colo.

52 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 53 more queue: www.acmqueue.com

dynamic duplicate elimination—eliminating both dupli-
cate URLs and duplicate content. With the system that I
described, we’ve avoided getting a Ph.D. dissertation and
instead have some piece of code you can hand off to your
youngest sibling.
Indexing. Next you need to churn through the pages
and build an index. This is tricky. Just don’t do anything
wrong, as the saying goes. One false step and those bil-
lions of pages are going to take too long to process and
your 1-MB DSL crawling line is going to seem fast.

There is a major field of study about the different
things to index on. Don’t get a Ph.D.; just index on
words. Words are what people search for; they don’t
search for N-Grams or letters or PTrees or locations in
streams, so any other method other than the simplest will
make you seem clever. But, hey, writing your own search
engine is hard enough. Save what cleverness you own for
ranking.

Two other pieces of key advice: First, just index the
data you need to serve your kind of search results and
do your kind of ranking. Don’t write down everything
and the kitchen sink—save that for when you go ultra-
commercial. The first item of business
is getting something presentable up.
Correction—start by getting something
up. Find out what went wrong and fix it.

Second, do not get attached to the
“index format.” The hallowed “index
format” is not the end of the search
engine, it is just the beginning. It is
a tool to see results, so change it and
change it often. Play with it, and you
and your team will be on a winner to be
able to improve search results quickly.

Why would you need to add things
to the index? Perhaps you’ve just
decided that it would be good idea to
keep whether the indexed word is in
the title. So now you need a space to
annotate this fact. You might have other
ideas that mean adding more data to
the index.

Let’s say that you’ve worked in the long dark until the
proud day when you type in a search for bug, and pages
that mention Britney Spears but not bug appear. All kinds
of things like that happen. Do a dance—you’re almost
there. Just keep fixing.

A last word of advice: when in the development phase,
keep a disk-based index architecture. You are not getting
lots of traffic, you want flexibility regarding which items
to place in the index, and mostly you want a happy team.
A happy team does not fight over bits. A happy team does
not see whose new feature is in and whose is out because
there isn’t enough memory. Buy disks, play with features,
and have fun.
Dynamic versus Static Ranking. Don’t do page rank ini-
tially. Actually don’t do it at all. For this observation I risk
being inundated with hate mail, but nonetheless don’t
do page rank. If you four guys in your garage can’t get
something decent-looking up without page rank, you’re
not going to get anything decent up with page rank. Use
the source, Luke—the HTML source, that is.

Page rank is lengthy analysis of a global nature and will
cause you to buy more machines and get bogged down on

this one complicated step—this one fac-
tor in ranking. Start by exploiting every-
thing else you can think of: Is the word
in the title? Is it in bold? etc. Spend your
time thinking about anything you can
exploit and try it out.

This again will give you the freedom
and make you develop an architecture
good for adding things and trying them
out. This will become invaluable later.
Serving. Runtime systems are hard.
Algorithms are hard. The hardest part
about a search engine is that you have
to do both. They have to work together,
and both parts are absolutely critical.

At serve time, you have to get the
results out of the index, sort them as per
their relevancy to the query, and stick
them in a pretty Web page and return
them.

SearchFO
CU

S

Search Engine
is hard

Why writing your own

Now that you have
the list of URLs,
you have to rank
them according to
your relevancy
algorithm.
This has to be fast.
People are waiting.

52 April 2004 QUEUE rants: feedback@acmqueue.com QUEUE April 2004 53 more queue: www.acmqueue.com

If it sounds easy, then you haven’t written a search
engine. Remember, first, that some queries have more
than one word. This means that you have to intersect
the index entries for the two words. My advice is to have
them presorted in some canonical URL number order so
that you can view the two (n) index entries as two stacks
and pop until the tops are equal, in which case, you win
the prize—the URL is in both index entries. These sorts of
computations have to be run at query time and they need
to be run quickly, so think hard about how you are going
to do intersections.

Next problem, query time ranking. Now that you have
the list of URLs, you have to rank them according to
your relevancy algorithm. This has to be fast. People are
waiting.

The fastest thing to do at runtime is pre-rank and
then sort according to the pre-rank part of your index-
ing structure. This often results in generic (read not the
best of breed) ranking algorithms. You need to take into
account the actual query when you are ranking. Thus,
you need some data in your index to help take the query
into account and re-rank your a priori ranking quickly at
runtime.

For the basic runtime architecture, you will find no
end to people willing to argue about the “appropriate”
way to do it. In practice, there are two basic disk-based
methods and other memory-based methods. Since we’re
doing this on the cheap, we’ll cover just the basic disk-
based methods.

The first major method is this: after indexing the files
locally—where your crawler deposited them—leave the
little indices there. Yes, do nothing more. This means at
runtime you ask all machines that have answers for the
appropriate query to get back to you ASAP. You drum
your fingers as long as you are willing, then gather these
little lists into a big list and sort this list for relevancy.

The other method is to gather all results for a particu-
lar word together in a big list beforehand. Then when a
query arrives, go to the appropriate machine, get the list,
and then sort for relevancy. Without showing my bias too
much, look on the bright side: for rare queries or obscure
words, these are equivalent.

NO ROOM FOR ERROR
When you look at all these steps and all the complica-
tions, this process is rife with things that go can wrong.
The hardest part about writing a search engine is that
you’re going to process billions of URLS and serve mil-
lions, if not billions, of queries. This does not leave a lot
of room for error. One super-linear algorithm applied over
the wrong-sized list of items and you are sunk. One lock
inside another lock and you are sunk. There will be no
code paths not explored. All of those comments in your
code, which print out errors like “This will never hap-
pen,” will happen.

When you think that you are done, there is still the
load balancing, the caching, the DNS servers, the ad
service, the image servers, the update architecture, and
(to take off on a familiar tune) a cartridge in a tape drive.
Oh, and if you would like to hear from someone who’s
already done it, read Mike Cafarella and Doug Cutting’s
article, “Nutch: Open Source Web Search,” on page 54 of
this issue.

Sadly, the biggest thing that goes wrong while writing
your own search engine is running out of time. Real life
often interferes and forces you to end your quest. In that
case, cheer up; once the search bug gets you, you’ll be
back. The problem isn’t getting any easier, and it needs all
the experience anyone can muster. Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

ANNA PATTERSON (anna@cs.stanford.edu) has written
two search engines. Most recently she wrote the big-
gest index in the world by indexing 30 billion Web pages
at the Internet Archive at Recall.Archive.org. In 1998
she coauthored a search engine at Xift, where she was
a founder. She received her Ph.D. in computer science
from the University of Illinois at Urbana-Champaign and
was a research scientist at Stanford University, where
she worked on phenomenal data mining. She is also the
mother of three preschoolers, who let her hack some-
times.
© 2004 ACM 1542-7730/04/0400 $5.00

www.acmqueue.com/forums

