Information Retrieval – Exercise 2
IST 441

This exercise is worth 6 points.

In this exercise, you will familiarize yourself with vector space models of documents and queries, similarity measures and ranking. To get partial credit in case of miscalculations, please give detail to your solutions.

Given the following documents and queries:

D1: You say goodbye, I say hello
D2: You say stop, I say go
D3: Hello, hello, you say goodbye
D4: I say yes, you say no

Q1: say goodbye
Q2: you hello

Specify the vocabulary of tokens/terms using full text indexing and no stemming (ignore capitalization and punctuation), and define an alphabetical token/term order. Construct the following:

1. (3pt) The document term matrices (document-term matrix contains rows corresponding to the documents and columns corresponding to the terms) based on
 a. Binary: only consider whether a term \(t \) appears in a document \(D \). Repeated terms in one document are counted as \(1 \) in binary matrices.
 b. Raw term frequency
 The raw term frequency \(tf(t \text{ in } D) \) is defined as the frequency of a term \(t \) appeared in document \(D \).
 c. Normalized Term frequency
 See for an example - http://en.wikipedia.org/wiki/TFIDF
 Term frequency for a term \(t \) in a document \(D \) can be normalized by the total number of terms \(N_D \) in the document.
 \[\text{Normalized } tf(t \text{ in } D) = \frac{\text{raw term frequency}(t \text{ in } D)}{N_D} = \frac{tf(t \text{ in } D)}{N_D} \]
 d. \(tf-idf \) weights.
 The inverse document frequency \(idf(t) \) of term \(t \) can be defined using this expression: \[\ln \left(\frac{N}{(n_j+1)} + 1 \right) \], where \(N \) is the total number of documents in the index, \(n_j \) is the document frequency of term \(t \) (document frequency is the number of documents that term \(t \) appeared in). Thus, for term \(t \) in document \(D \):
 \[tf-idf \ (t) = \text{raw term frequency}(t) \times idf(t) = tf(t \text{ in } D) \times \left[\ln \left(\frac{N}{(n_j+1)} + 1 \right) \right] . \]
2. (1pt) The query term matrices for the same weights
 a. Binary
 Only consider whether a term \(t \) appears in a query \(Q \).
 b. Raw term frequency
 The raw term frequency \(tf(t \text{ in } Q) \) is defined as the frequency of a term \(t \) appeared in query \(Q \).
 c. Normalized Term frequency
 Term frequency for a query can be normalized by the total number of terms \(N_Q \) in the query.
 \[\text{Normalized } tf(t \text{ in } Q) = \frac{\text{raw term frequency}(t \text{ in } Q)}{N_Q}. \]
 d. \(tfidf \) weights. (The inverse document frequency \(idf(t) \) for term \(t \) is calculated in problem 1)
 \[tfidf(t) = tf(t \text{ in } Q) \times idf(t) = tf(t \text{ in } Q) \times \left[\ln \left(\frac{N}{(n_j+1)} \right) + 1 \right] \]
 Note: \(N \) is the number of total documents. \(n_j \) is the document frequency of term \(t \). Thus, \(idf(t) \) is the same as calculated in problem 1.

3. (1pt) (1) Using results from 1 and 2, calculate with all of the above weights the document – query similarity coefficients for the following similarity measures:
 a. Inner product
 Inner product is calculated on two vectors, a query \(Q \), and a document \(D \).
 b. Cosine measure
 Cosine similarity is calculated on a query \(Q \) and a document \(D \).

4. (1pt) Devise a ranking based on the results of 3. Compare and discuss these results. Which would you say give the best rankings and why?